A hash algorithm for N3 graphs in CWM
Work In progress

Jesus Arias Fisteus

jfisteus@csail.mit.edu, jaf@it.uc3m.es

Universidad Carlos Il de Madrid

Visiting scientist at the Decentralized Information Group at CSAIL-MIT

This presentation: http://www.it.uc3m.es/jaf/mit/20060914/presentation.pdf

B
o
(%]
8
Q.
%
of
5
+
[92]
o
(]
S
(0]
s
2
ie]
L
o
L

Implementation: http://www.it.uc3m.es/jaf/mit/20060914/hash-n3.tar.gz

A hash algorithm for N3 graphs in CWM —p. 1

Goal

m Design a hash algorithm for N3 graphs such that:
= Equivalent graphs have the same hash value.

= Non equivalent graphs have (with high
probability) different hash value

m For this work graphs are considered equivalent if:

m Have the same statements, with the same or
different order.

m Have the same variables / blank nodes, with the
same or different names.

IATEX+ prosper

+
0
Q
©
IS
o

<
=
2

5
()
=
5
L

A hash algorithm for N3 graphs in CWM —p. 2

Operators

m XOR (®)

= Commutative and associative

= Problem: e ®a =0
m Product (modulus N)

= Commutative and associative

m If N prime, Aa,b#0 /ab= 0.

m NV =232 — 5 s the largest 32-bit prime.
m Product and XOR combined:

m(ab)®c# (a®c)(b® c)

m(a®b)c# (ac) @ (be)

IATEX+ prosper

+
0
Q
©
IS
o
<
=
2
5
o}
=
5
L

A hash algorithm for N3 graphs in CWM —p. 3

Why two different operators

IATEX+ prosper

+
0
Q
©
IS
o
<
=
2
5
o}
=
5
L

m Associativity and commutativity are not good

sometimes:

= Example: {1} = {/f2}
= hash(fi) =a®b
= hash(fa) = d@ e
» hash(=) =
(

« hash({f1} = {fz}) =(a®b) RcR(d®e)

(a®b)Rc® (dR e)

(a®e)Rc® (dR D)

(ab) ® c® (de) # (ae) ® ¢ ® (db)

A hash algorithm for N3 graphs in CWM —p. 4

Overview of the algorithm

m Recursive (when entering subformulae).

m Combines partial hashes of. formulae, statements
(triples), variables, lists, labelled nodes, literals.

m Every statement / formula affects the hash value of
the variables that appear in it and viceversa.

IATEX+ prosper

+
0
Q
©
IS
o

<
=
2

5
()
=
5
L

A hash algorithm for N3 graphs in CWM —p. 5

Hashing a formula

1. Hash every statement in the formula
(hsn hsza ey hsn)

2. Take the hash of every varible declared in the
formula (hy,, ey, ...\ by).

3. Combine them: h = hg, hs,...hs, by, hy,...hy, .

+ IATEX+ prosper

0
Q
©
IS
o
<
=
2
5
o}
=
5
L

A hash algorithm for N3 graphs in CWM —p. 6

Hashing a statement (triple)

+ IATEX+ prosper

0
Q
©
IS
o
<
=
2
5
o}
=
5
L

1. The constants kg, k,, k, are pre—defined.
2. Hash the terms in its subject, predicate and object

(h87 hpa hO)

3. Combine them: i = (hsks) @ (hpkp) ® (hoks).

A hash algorithm for N3 graphs in CWM —p. 7

Hashing a term

m Labelled nodes: hash their URI (python’s hash
function).

m Literals: hash them as strings (python’s hash
function).

m Formulae: recursive.
m List: hash its member terms (recursion again).
mh = (h1 %Y 1)(h2 %Y 2)...(hn %Y n)

m Anonymous variables: take their hash in the
previuous round (initially a constant, see later).

IATEX+ prosper

+
0
Q
©
IS
o
<
=
2
5
()
=
5
L

A hash algorithm for N3 graphs in CWM —p. 8

Hashing anonymous variables

m For each variable:
1. Initialize its hash with a constant: universal
(h = k,,) or existential (h = k).

2. Recalculate a new hash #' from its previous
nash h» when it appears in position p (subject,
oredicate or object) of a statement (hash h;):

W =h® (hiky).
3. When the processing of a formula (hash &)

finishes, if the variable has been used in it or
any inner formula and is declared also for the
next upper formula, mix their hashes in the

upper level: 1" = h'(h @ hy).

IATEX+ prosper

+
0
Q
©
IS
o
<
=
2
5
()
=
5
L

A hash algorithm for N3 graphs in CWM —p. 9

Example on hashing

B
o
(%]
S
Q.
%
ot
5
+
[92]
o
(]
S
(0]
s
2
ie]
L
S
L

{?x test:partO ?y. ?z test:includes ?y}

=> {?X test:partOF ?z}

?X test:partOF ?y hq (kv ks) ® (hpartofkp) @ (ku, ko)

?z test:includes ?y ho | (kv ks) @ (hincludesky) ® (ky, ko)

?X test:partOf ?z hs | (kv ks) @ (hpartofkp) @ (ky, ko)
{?X test:partOF ?y...} | hy hiho
{?X test:partOf 7z} hy, hs

?X x kvu((hlkS) %Y hfl)((h3k8) ® hf2)
’?y Y kvu((hlko) Y (h2ko) & hfl)
2z 2 | ko, ((hoks) @ by,)((hsko) @ hy,)

A hash algorithm for N3 graphs in CWM —p. 10

Example on hashing (cntd.)

{?x test:partO ?y. ?z test:includes ?y}
=> {?X test:partOF ?z}

h = ((hfks) @ (Rimplieskp) @ (hf,ko))hahyh

IATEX+ prosper

+
0
Q
©
IS
o
<
=
2
5
o}
=
5
L

A hash algorithm for N3 graphs in CWM —p. 11

Conclusions on hashing

m Efficient algorithm.

m Seems to work well for comparing / indexing N3

formulae:
= Independent of the ordering of statements.

= Independent of the name of variables.
= Low probability of collision at formula level.

IATEX+ prosper

+
0
Q
©
IS
o

<
=
2

5
()
=
5
L

A hash algorithm for N3 graphs in CWM —p. 12

Canonicalization

N
[}
o
2]
o
8
o
x
o
=
+
[92]
Qo
[
IS
(0]
<
s
2
©
()
=
©
L

m The canonicalization system has to decide:

= A canonical ordering for statements in the same
formula.

m A canonical ordering for variables in the same
formula.

s A canonical name for variables.

m Solution using the hash algorithm:
m The hash of statements defines their ordering.
m The hash of variables defines their ordering.
m The ordering of variables defines their name.

A hash algorithm for N3 graphs in CWM —p. 13

Drawbacks

m The canonical order is based on the hash value of
statements / variables:

m |If two statements in the same formula have the
same hash, two different orderings are possible.

m |[f two variables have the same hash, two
different naming relations are possible.

m Conclusion: collisions at statement / variable level
can provoke failures in canonicalization.

-
(]
o
2]
o
o
o
X
of
I
+
9]
Qo
[
=
(]
<
=
2
©
()
=
©
L

A hash algorithm for N3 graphs in CWM —p. 14

Solution

m Run the hash algorithm three times:

m Initially the hash of variables is constant in the
first step.

= In every step:
= The hash of statements is computed from the
hash of variables in the previous level.
= The hash of variables is computed from the
hash of statements in the same level.

step1 stepo steps

N —
Vo — 51— Vi— 5 —Vo— 55—

N
[}
o
2]
o
8
o
x
o
=
+
[92]
Qo
[
IS
(0]
<
s
2
©
()
=
©
L

A hash algorithm for N3 graphs in CWM —p. 15

Other problems and fixes

m Variables defined locally in two or more formulae
that are exactly equal will collide.
= Solution: combine the hash of every variable

with the hash of every parent formula of the
formula in which the variable is declared.

] th —h, ® (hf1hf2“'hfn>

m Variables declared but not used have a fixed hash
value and therefore all of them collide.

s Solution: remove such variables from the
canonicalized formula.

IATEX+ prosper

+
0
Q
©
IS
o

<
=
2

5
()
=
5
L

A hash algorithm for N3 graphs in CWM —p. 16

Implementation

m Features:
m Loads documents using the CWM parser.

m Calculates the hash value of the loaded
formula.

m Canonicalizes the loaded formula.
s \Writes the canonicalized formula.

@
o
(%]
o
Q.
X
of
I
+
[92]
Qo
[
=
(0]
£
2
ie]
L
5
L

A hash algorithm for N3 graphs in CWM —p. 17

Implementation (cntd.)

IATEX+ prosper

+
0
Q
©
IS
o
<
=
2
5
()
=
5
L

m Limitations:
= The output is written only for testing purposes,
doesn’t use CWM code for pretty—printing.

= Problems found in the parser:
= Recognises as Fragment variables defined

with @ or Sone.
« Recognises as Fragment variables defined

withthis | og:forAll.
= Sometimes fails recognising variables when

they have the same name but are declared
Inside different overlapping formulae.

A hash algorithm for N3 graphs in CWM —p. 18

Test and results

m Tested with all the N3 files under 2000/ 10/ swap:

m Total files: 889.
» Files with parse errors: about 20 / 307

» Files with canonicalization collisions: 19.
m Conclusion:
m [t works with a reasonable percentage of files.

= But more work investigating the causes of
existing collisions might improve the algorithm.

IATEX+ prosper

+
0
Q
©
IS
o

<
=
2

5
()
=
5
L

A hash algorithm for N3 graphs in CWM —p. 19

Time for discussion. ..

Edited with emacs + IATEX+ prosper

A hash algorithm for N3 graphs in CWM — p. 20

	Goal
	Operators
	Why two different operators
	Overview of the algorithm
	Hashing a formula
	Hashing a statement (triple)
	Hashing a term
	Hashing anonymous variables
	Example on hashing
	Example on hashing (cntd.)
	Conclusions on hashing
	Canonicalization
	Drawbacks
	Solution
	Other problems and fixes
	Implementation
	Implementation (cntd.)
	Test and results
	Time for discussionldots

