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Abstract—As mobile networks become more complex to
handle increasing data traffic and a broader range of services,
operators must balance the trade-offs between static and
dynamic configurations. While traditional static configurations
across the entire network are simpler to manage, dynamic
adjustments, though more complex to operate, are better suited
to adapting to evolving demands. To explore this balance, in
this paper, we use real data from a mobile network to evaluate
the potential gains in throughput gains, measured by downlink
traffic, when dynamically adjusting configurations at both
spatial and temporal scales. Our findings show that combining
these dynamic adjustments leads to significant performance
improvements, with traffic volume gains exceeding 30% when
configurations are tailored at the cell level and to the hour
scale.

Index Terms—Mobile network, Cell configuration.

I. INTRODUCTION

Mobile networks provide ubiquitous connectivity, not only
for users but also for services, devices, and sensors, making
them increasingly critical to everyday life and business op-
erations. The supporting infrastructure consists of thousands
of access cells, each of which must be configured and
maintained by network operators, leading to high operational
costs and significant management overhead. The behavior of
each cell affects neighboring cells and is influenced by vari-
able network conditions, such as the number of connected
users, the type and volume of their traffic, and their mobility
patterns. As new services and technologies continue to be
integrated [1], operators are challenged to simplify network
management while maximizing infrastructure efficiency [2].
This is no easy task, as each additional service adds layers
of complexity to the network. Looking ahead, this complex-
ity will only increase, making future networks even more
intricate, further complicating the management process [3].

To improve network performance, network slicing has
emerged as a solution, enabling more agile networks that
can dynamically adjust to varying traffic loads and service
requirements. While studies have shown the benefits of
such flexibility, they also reveal the added complexity in
network management. This evolution toward flexibility has
been supported by studies that quantify the benefits of such
adaptability using real-world data traces, though it comes at
the cost of increased complexity in network management [5].
In line with these developments, we explore the advantages
of dynamic network re-configurations. Using real data, we

aim to understand how these adjustments could further
optimize network throughput, balancing gains in adaptability
with the associated management overhead.

In this study, we focus on analyzing how more frequent
network reconfigurations could improve performance, partic-
ularly in terms of the key performance indicator defined by
the network operator: Downlink Traffic. We then perform
the same analysis considering how the Downlink traffic
is affected by allowing different network configurations at
different geographical scales, and how the two configuration
dimensions (i.e., time and space) affect each others. Using
real-world data, we examine different configuration patterns
at various scales to explore potential gains.

While this study primarily focuses on LTE technologies,
the insights derived from our analysis may extend to Be-
yond 5G (B5G) networks. The configuration parameters
examined, such as cell reselection priorities and signal
thresholds, are foundational to mobile network operation and
remain relevant in more advanced architectures. As such, the
dynamic reconfiguration strategies explored here, along with
the performance gains observed, could be replicated in B5G
networks.

The rest of this paper is organized as follows: Sec. II
analyze the state of the art for the optimization of cell
configurations in mobile access networks. Sec. III describes
the considered network scenario, as well as the reference
dataset. It also details the network configuration parameters,
and how they are currently selected by the operator. Sec.
IV analyzes the network performance corresponding to the
baseline configuration, i.e., the one preferred by the net-
work operator. Sec. V evaluates the network performance
under different configurations, as well as the potential gain
resulting from their combination over space and time, at
different granularities. Finally, Sec. VI presents conclusions
and possible future research directions.

II. RELATED WORK

In the defined context, various works describe efforts to
optimize the configuration of mobile access networks, in-
cluding different optimization objectives and methodologies.
In particular, [6] analyzes real network traces to identify
anomalies, to be used to design mitigation strategies through
network reconfiguration of cell clusters. [7] analyzes the



usage of neural network to predict the behavior of a network,
on the basis of its configuration. This work considers the
transmitted traffic as an environmental variable, while we
consider it as the main KPI, as suggested by the network
operator. [8] proposes the use of Digital Twins to test
configurations in Radio Access Networks (RANs), and to
train Reinforcement Learning solutions. The solution is then
only tested on a small network (i.e., 5 nodes). [1] analyzes
the usage of a Machine Learning (ML)-based framework,
to find the optimal value of configuration parameters for
cells in a mobile access network. The authors use Signal
to Interference and Noise Ratio (SINR) as target KPI to
optimize the parameters, and optimize only two configura-
tion parameters. Similarly, [9] proposes an ML solution to
the cell configuration problem, aiming at maximizing the
cell coverage, while reducing the interference (hence not
taking traffic nor users into account). At the same time,
[10] suggests a solution based on support vector machine,
to maximise the user throughput in RANs. Still, authors
do not specify the reference scenario used. [11] analyzes
a solution to optimize load balancing in 5G mobile cellular
networks, through the configuration of cell parameters. The
result is then tested on a synthetic network. Finally, [12]
tackles the parameter optimization problem from an end-
user point of view, using the Quality of Experience as an
objective function. The results are then simulated for testing
on a 19-cell reference network.

Overall, the solutions present in the reference literature
allow to optimize the parameter selection for the cell con-
figuration, taking into account different objectives and using
different methodologies. Still, to the best of our knowledge,
this work represents the first case of optimization directly
involving a real network operator, which provides network
data and measurements, as well as insights on the objectives
and optimization goals. The findings are evaluated over a real
and operating network, showing potential increases in the
traffic carried by the network of above 30%, while insights
are offered on which configuration changes offer the best
increases in terms of network performance.

III. NETWORK DESCRIPTION

A. Deployment sites

We consider the access network of one of the largest mo-
bile network operators in Brazil. The network operates using
LTE technology and comprises 1,553 cells, distributed across
three municipalities: Itaguaı́, São Gonçalo, and Petrópolis,
covering a total of 85 neighborhoods with 158 nodes. The
spatial distribution of the cells is shown in Fig. 1, with a
detailed view of the cells in Itaguaı́, shown as a zoom in.

The cells operate across four different frequency bands:
700 MHz (Low Band), 1.8 GHz and 2.1 GHz (Mid Band),
and 2.6 GHz (High Band), offering a range of bandwidth
configurations to serve varying network demands. There is
notable heterogeneity in the network, with each cell using
a different combination of frequency bands (42.2% of the

cells utilize three frequencies, 27.4% use two frequencies,
17% operate with four frequencies, and 13.4% use just one
frequency band).

Fig. 1. Location of the cells in the considered network, and in the Itaguaı́
municipality in detail (zoom in).

Each cell measures different KPIs every hour, including
traffic volume, number of users, number of connection drops,
etc. Some of the measurements are missing, due to faults in
the cell measurements or in the cell communication with the
data server. On average, this problem affects about 20% of
the measurements. Among the measured KPIs, the network
operator indicated the Downlink Traffic (DL) Volume as the
most important metric, with respect to the other ones, as it
directly reflects network capacity utilization and the effective
delivery of services to end users. Based on this preference,
our analysis focuses on traffic volume as the primary metric
to evaluate the quality of different network configurations.

B. Network configurations

For each cell, a configuration is selected from a set
of predefined parameters, which can vary depending on
the equipment, vendor, and version, creating some network
heterogeneity. With numerous possible values for each pa-
rameter, optimizing configurations becomes complex and
costly. To manage this, the operator typically relies on a
trial-and-error approach, adjusting configurations based on
performance improvements. The parameters are selected
from a set of predefined configurations (configurations 0,
1, 2, 3), which have proven effective for the operator and
help avoid performance issues. While a single configuration
is usually applied across the network, adjustments may
be made in specific problem areas. However, increasing
the granularity of these configurations significantly raises
management costs, which operators aim to minimize.

The parameters governing cell configuration play a crucial
role in determining how user equipment (UE) transitions
between different frequencies and cells. These settings in-
fluence decisions like when a UE should switch to a neigh-
boring cell or change frequency based on signal strength,
network load, and priority levels. By adjusting these param-
eters, the network can ensure that UEs are connected to the
most appropriate cell, improving overall performance and
balancing the distribution of traffic across the network.

The main parameters that influence cell configuration are
essential in determining how UEs interact with the network.
Cellreselpriority establishes the priority of a cell during
reselection, meaning that when multiple cells have similar



signal strength, UEs will prefer those with higher priority.
QRxLevMin sets the minimum signal strength required for
a UE to access a particular cell, ensuring that only cells
with sufficient signal quality are used. The SNonIntraSearch
parameter triggers the UE to search for cells on other
frequencies when the current cell’s signal degrades, while
ThrshServLow focuses on initiating searches within the same
frequency when the serving cell’s signal becomes weak.
Additionally, q-Offset applies an offset to the signal strength
measurements of neighboring cells on different frequen-
cies, which can influence the reselection process by either
boosting or lowering the perceived strength of those cells.
ThreshXHigh defines the threshold that neighboring cells
must meet for reselection during inter-frequency transitions,
and finally, TResLTE controls the amount of time a UE must
measure a stable signal before reselecting, reducing unnec-
essary switches caused by temporary signal fluctuations.

The network operator has a set of recommended configu-
ration parameters based on experience and performance data.
These settings are designed to maintain network stability and
optimize performance. However, due to privacy concerns and
internal policies, the specific values of these configurations
cannot be shared.

IV. BASELINE PERFORMANCE

In the following section, we look at different network
statistics under the baseline configuration (conf0), which
is the one used by the operator because it results in the best
throughput in terms of traffic, i.e., the primary KPI. We do
this to understand the baseline setup so we can compare it
with other configurations and see how they affect network
performance.

A. Downlink Traffic

We begin by analyzing the hourly traffic over the course
of the week. Fig. 2 shows the traffic in terabytes (TB) for
each day, from Monday to Sunday. It can be seen that
the amount of traffic generated per hour reveals an average
traffic of 3.4TB. The highest traffic observed during peak
hours reaches 5.7TB, while the minimum traffic during off-
peak periods drops to 0.6KB.
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Fig. 2. Hourly traffic across the entire network over a week, using the
baseline configuration.

The Traffic measurements in Fig. 2 displays a typical day-
night cycle, with consistent patterns throughout both week-
days and weekends, and only slight variations. Interestingly,

overall traffic remains stable during the weekends. Addi-
tionally, there is a distinct double peak each day, reflecting
increased activity during midday and evening hours.

B. Peak hour & frequency distribution

The two peaks that arises in the traffic behaviour from Fig.
2 may be due to different geographical areas experiencing
peak hours at different times of the day. Residential neigh-
borhoods typically see peaks in the evening, while commer-
cial areas peak around noon. Fig. 3 shows the distribution
of peak hours for different network nodes, with the x-axis
representing the time of day and the y-axis showing the
percentage of times a given hour was a peak hour during
the week. Most peak traffic occurs between 12:00 PM and
midnight, with the highest concentration from 6:00 PM to
9:00 PM. There is also a smaller peak in the early afternoon,
while very few or none in early morning and late night hours.
This suggests that the majority of the network’s peak usage
happens in the afternoon and evening, aligning with typical
user behavior patterns.
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Fig. 3. Distribution of the peak hour for the different nodes in the network.

C. Users over time

We analyze the number of users in the network as it
does not depend on the network configuration; rather, it
is an external factor that influences the performance of the
configurations. This makes it a critical variable to consider
when assessing how different configurations impact overall
network performance.

Fig. 4a shows the number of users throughout the
week.Fig. 4a shows a similar trend to the weekly traffic
pattern, with consistent day-night cycles and two peaks each
day. However, while the number of users decreases on the
weekends, the overall traffic remains steady. This suggests
that, on weekends, individual users consume more traffic
compared to weekdays, compensating for the lower number
of connected users, which is expected.

More importantly, establishing a benchmark is crucial
for comparing the different configurations. To this end,
in Fig. 4b, we show ∆, the maximum difference in the
number of users per hour across the four weeks analyzed.
In the figure, the x-axis represents again the days of the
week, and the y-axis shows the variation in the number
of users, scaled by ·103. We found that the differences
are smaller on Tuesdays, and Wednesdays, indicating more
stable conditions on these days, which makes comparisons
between different configurations more reliable. In contrast,
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Fig. 4. (a) Average number of connected users per hour during the baseline
week. (b) Hourly difference between the maximum and minimum number
of connected users, to evaluate the variability across different weeks.

Fridays show greater variability between weeks, making
comparisons less consistent.

D. Best static configuration

Finally, we assess the performance of the configurations
by analyzing their throughput over two comparable days. As
previously mentioned, conf0 is particularly important, as
the operator considers it to be the best configuration based
on experience. Since Traffic is the primary KPI, we measure
the traffic carried by the network under each configuration
during those two days to establish a baseline for comparison
and further analysis. This provides a reference point for
evaluating the impact of dynamic configuration changes.
On the basis of this analysis, conf0 results in 170.3 TB,
conf1 in 167.1 TB (-1.9% with respect to conf0), conf2
in 169.7 TB (-0.4% with respect to conf0), and conf3 in
164.9 TB (-3.3% with respect to conf0). As we expected,
conf0 achieves the highest throughput. However, the traffic
increase compared to other configurations is less than 4%,
indicating only a slight improvement. Nonetheless, If we
were to choose a single configuration for the whole network
and the whole week, conf0 would still be the optimal
choice.

V. CONFIGURATION ANALYSIS

To analyses the impact of choosing different configura-
tions over the considered network, we agreed configuration
changes with the operator to analyse their effect on the
network conditions in order to design a methodology to
evaluate their consequences, and be able to properly select
the right configuration. In particular, the four indicated
presets have been used, sequentially, each one for a con-
secutive week, over a period without major holidays nor
network changes. The obtained configuration sequence has

been conf0 → conf1 → conf2 → conf3, between
August and October 2023.

A. Temporal Analysis

To investigate the performance of each configuration, we
analyze how traffic patterns fluctuate throughout the day, to
identify which configuration performs best at each hour.
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Fig. 5. (a) Total traffic carried by the network, under the different
considered configurations, and (b) best performing configuration by hour.

In Fig. 5a four curves are shown, each one representing the
amount of traffic observed across the network at each hour
of the day, for a different configuration. Interestingly, the
curves intersect, suggesting that, at certain times, different
configurations result in more traffic than others. This means
that, at finer temporal resolutions, conf0 is not always the
most effective choice. This is clearer in Fig. 5b, where the
best configuration for each hour is shown, represented by
different colors, along with the corresponding amount of
traffic generated by that configuration at that time. Notably,
conf2 dominates most of the day, proving to be the
optimal choice during the majority of the hours. We observe
also that certain hours/conditions are better suited to some
specific configurations than other, demonstrating that no
single configuration is consistently optimal throughout the
entire day. For instance, conf3 looks the most suitable for



off-peak hours, while conf1 looks the most suitable for
decreasing trends.

Since network traffic fluctuates throughout the day, we
need to account how much each hourly-optimized configu-
ration performs relative to a static configuration. This can
be seen in Fig. 6, which shows the relative traffic gain when
using the optimal configuration for each hour compared
to conf0 (i.e., the best configuration when considering
only a single configuration over the whole day), and when
using the second best configuration (also against conf0).
In some hours, the gain exceeds 10%, while for most hours,
if there is any gain, it remains below 5%. In general, when
the best configuration shows no gain (e.g., around 18:00),
it means that conf0 is the best configuration. In these
intervals, the second best configuration is performing worst
than conf0, hence showing a negative gain with respect to
that. Similarly, when the second best configuration shows
a null gain (e.g., after 12:00), it means that conf0 is
the second best configuration. On average, switching to
the optimal configuration each hour results in a 3% traffic
increase, which is not significant enough to justify the added
complexity of dynamic configuration changes, as this gain
is similar to the difference between the best and worst static
configurations for the network.
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Fig. 6. Traffic gain by hour, when using the best (and second best)
configuration for each hour, with respect to using always the conf0.

In this subsection, we demonstrated that dynamically
adjusting the network configuration on an hourly basis across
the entire network leads to some traffic gain. However, as
shown in Sec. IVD, the gain is not significant with respect to
a static configuration, indicating that the added complexity of
dynamic adjustments may not always justify the performance
improvements.

B. Spatial Analysis

We now analyze the spatial scale of reconfiguration.
Intuitively, one might assume that similar network conditions
in nearby areas would allow the same configuration to be
effective across cells. To test this, we randomly selected a
set of neighboring cells connected to different nodes and
analyzed the optimal configuration for each cell, allowing
reconfigurations every 6 hours.

We consistently found that the best configuration differed
from cell to cell, as shown in Fig. 7, where each color
represents a different optimal configuration for a cell over 6-
hour periods throughout the reference day. The distribution
of optimal configurations is largely uniform, indicating that

tailoring configurations to specific geographical areas can
significantly enhance traffic performance. This suggests that
allowing different configurations for different geographical
areas, allows the network to reach a higher gain in terms
of carried traffic. In particular, when selecting the best
configuration for each one of the 3 municipalities, a traffic
increase of 1% is observed, while when selecting the best
configuration for each neighborhood, the gain rises to 8.8%,
10.6% for node, reaching 17.5% when selecting the best
configuration for each cell.
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Fig. 7. Best configuration for different neighbour cells, on the reference
day (blue: conf0, red: conf1, green: conf2, and yellow: conf3).

C. Estimating Spatio-temporal Improvement

Now, we evaluate the potential traffic gain from dynami-
cally adjusting configurations at various spatial and temporal
scales. To this extent, we admit, for each dimension of the
analysis, different values of the corresponding granularity,
and then analyze all the possible combinations, correspond-
ing to different trade-offs. Specifically, we consider time
granularities of 1, 2, 4, 8, 12, or 24 hours, alongside spatial
granularities at the cell, node, neighborhood, municipality,
or region level. For each combination of these granularities,
we select the configuration that maximizes traffic over the
study period. The resulting values of optimal configurations
is presented in Fig. 8, where each curve corresponds to a
spatial resolution, the x-axis indicates the time granularity,
and the y-axis shows the average percentage of traffic gain
for the chosen setting.

The simplest scenario is when a single configuration is
applied across the entire network, and it is not allowed
to change over the 24h period. This scenario corresponds
to the left point of the bottom curve (orange), in Fig. 8.
Here the gain is marginal (0.5%), with respect to having
a fix configuration always. Remaining on the same curve
but moving to the right, we see that selecting a single
configuration for the entire region, but allowing hourly
adjustments, (i.e., right end of the lower curve - orange - also
corresponding to the scenario analysed in Fig. 5.b) yields
an average gain of 3.3%. The curve immediately above
(light brown) corresponds to the scenario in which different
configurations can be selected for different municipalities. In
the next scenario, different configurations can be chosen for
different municipalities, which leads to a marginal improve-
ment of 1% when changing configurations every 24 hours
and 4.9% when changing every hour. In contrast, selecting
configurations at a neighborhood or eNodeB level achieves



more substantial improvements: when a single configuration
is chosen for the entire day, gains reach 8.8% (neighborhood)
and 10.4% (eNodeB), while allowing hourly configuration
changes increases these gains to around 16.1% and 17.4%,
respectively. Finally, allowing configuration changes at cell
level results in substantial throughput improvements (dark
blue curve). In a less complex scenario, where the config-
uration is fixed for each cell over 24 hours (left end of the
curve), we observe a 17.5% traffic gain. In the most dynamic
scenario, with hourly adjustments at the cell level (right end
of the curve), traffic volume increases by 30.7%.
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Fig. 8. Average percentage of traffic increase, allowing configuration
changes with different time granularities (the x-value indicates the mini-
mum interval over which a configuration cannot change), and at different
geographical scales (different curves).

As expected, Increasing both temporal and spatial flexibil-
ity yields significant performance gains: allowing different
configurations for neighborhoods or cells provides a larger
improvement than simply changing configurations more fre-
quently. As time granularity moves from 24-hour to 1-hour
intervals, gains increase from about 3% at the region level to
nearly 15% at the cell level. In the opposite direction, higher
spatial granularity produces gains rising from roughly 17%
under 24-hour intervals to about 30% under 1-hour intervals.
These results show that each dimension of configuration
flexibility not only boosts performance on its own but also
enhances the improvements afforded by the other dimension,
leading to more-than-linear overall gains.

VI. CONCLUSIONS AND FUTURE WORKS

The configuration of cells in mobile access networks is a
crucial task for network operators and their business, as it
represents the key task regulating network performance and
operational and management costs.

In this paper, we first analyzed how the selection of differ-
ent cell configurations affect the main KPI for the network

operator (i.e., traffic volume carried by the network). We
then analyzed the potential gain an operator may achieve
by introducing flexibility in the selection of the cell config-
uration, both varying it in time and in spacial granularity,
as well as mixing the two approaches. Results show that
both flexibilities result in higher carried traffic, but that
spatial flexibility in the configuration selection is much more
effective, especially when allowing different configurations
for different neighborhoods and for different cells (with
gains of above 15% and of above 30% respectively). They
also show that the two analysed flexibilities boost each other,
achieving better network performance when combined.

In future works, we would like to better understand the
correlations between network conditions and the correspond-
ing configuration resulting better for them. We will evaluate
how a configuration selection affects other KPIs, such as
fairness for the traffic distribution among frequencies, or
user drops. Finally, we will take into account the operational
cost of the configuration changes and of their granularity, in
order to evaluate an economic objective function, involving
the network operator for its expertise in the field.
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