
DEBAC: Dynamic Explainable Behavior-Based
Access Control

Lucı́a Cabanillas Rodrı́guez∗†, Juan Manuel Montes-Lopez†, Diego R. López∗, Pablo Serrano†
∗Telefónica Innovación Digital, Madrid, Spain

†Universidad Carlos III de Madrid, Madrid, Spain

Abstract—Traditional access control mechanisms rely on static
policies that lack flexibility in adapting to dynamic security
threats. In this paper, we present DEBAC: a Dynamic Explainable
Behavior-based Access Control architecture, which supports a
dynamic assessment of a device trust. Our approach leverages
Explainable Boosting Machines (EBMs) to compute a trust score
in real-time while providing human-interpretable explanations for
access decisions. This dynamic and explainable trust evaluation
serves as the cornerstone for defining adaptive access policies,
supporting a dynamic response to behavioral deviations. We
demonstrate the feasibility of DEBAC with real-life data from a
campus WLAN, proving the ability of EBMs to accurately distin-
guishing between devices while providing a human interpretable
explanation for the classification.

Keywords—Access Control, Dynamic Policy, User Behavior,
Explainable ML.

I. INTRODUCTION

Traditional access control mechanisms, such as Role-Based
Access Control (RBAC) and Attribute-Based Access Control
(ABAC), are commonly deployed to regulate user permissions
in information systems. However, these models rely on static
policies that lack the flexibility to adapt to evolving security
threats: RBAC assigns permissions based on predefined roles
[1], making it unsuitable for adapting to dynamic security
environments, while ABAC [2] improves flexibility by incor-
porating contextual attributes such as location, device type, or
time of access, yet it still depends on manually defined rules,
which may not account for behavioral variations or real-time
threats. This rigidity makes it challenging to detect and respond
to security incidents dynamically.

To address these limitations, recent research has explored
Machine Learning (ML) based access control models that dy-
namically adjust access decisions based on user behavior and
context. These models move beyond static rule enforcement
by continuously evaluating a user’s trustworthiness, behavioral
anomalies, and environmental context. By doing so, they allow
access policies to adapt in real-time to the observed conditions,
instead of relying on a predefined set of rules. However, the
adoption of ML in security and access control introduces one
key challenge, namely, explainability [3]. Unlike traditional
models with clear, human-readable policies, ML-based systems
generate complex, data-driven decisions, making it difficult for
administrators to interpret and justify access outcomes.

To address the above, we propose a solution where expla-
nations for trust evaluation scores are provided to the decision
point, along with explanations of the final decision about the
access requests, ensuring both transparency and accountability.

This allows security teams to analyze why access was granted
or denied, and supports policy refinement by making ac-
cess control decisions more interpretable and adaptable. More
specifically, in this paper we propose DEBAC: a Dynamic Ex-
plainable Bevaviour-based Access Control architecture, which
relies on explainable ML to evaluate device behavior and
network activity, generating in real-time a behavioral trust
score. In contrast to previous approaches, based on a set of
fixed rules, our system adapts access permissions based on how
a device behaves, improving security while allowing flexibility.
While our implementation leverages Explainable Boosting
Machines (EBMs) to assess how closely a device’s activity
matches its historical profile from the repository, DEBAC
is designed to be model-agnostic, allowing for alternative
explainable ML techniques to be integrated as needed., which
assess how closely a device’s activity matches its profile
from the Repository. In a nutshell, DEBAC is composed of
four main building blocks: data collection (logging network
interactions), behavioral profiling (building a history of device
activity), trust assessment (computing a trust score), and policy
enforcement (adjusting access as needed).

The rest of the paper is organized as follows. Section II
provides a detailed description of the proposed framework,
presenting the system’s architecture and how behavioral in-
sights are integrated into access control decisions. Section III
introduces the proof of concept, showcasing the explainability
module of the proposed access control model. Section IV
reviews existing research in the field, offering a comparative
analysis of current approaches and highlighting how they relate
to the proposed method. Finally, Section V summarizes the
findings and outlines potential directions for future research in
dynamic access control systems.

II. PROPOSED FRAMEWORK

Here we introduce the framework for context-aware and
explainable access control. First, we outline the architecture
of the model (II-A), detailing its modules for enforcing access
control and providing explainability. Next, we explain how
device behavior is compared (II-B) to assess consistency over
time. We then describe the use of EBMs to assign trust
levels and generate interpretable explanations (II-C). Finally,
we demonstrate how trust levels and behavioral insights can
support the development of fine-grained access policies (II-D),
allowing for adaptive and transparent security decisions.

A. Architecture

The proposed access control architecture is presented in
Figure 1. As we explain next, it includes explainable machine



learning to support a dynamic, behavior-driven access control.
As mentioned above, this architecture adapts to evolving
security conditions by analyzing user behavior in real-time,
in contrast to previous models that rely on a set of static rules.
The system is composed of the following key elements:

Resource

Policy
Check

Policy
Decision

IdP

Access to resource

Policy
Administration

Point (PAP)

Policy

Create policy

Change

Authentication

Resouce
request

Read

Access Control

Policy
Enforcement
Point (PEP)

Policy Decision
Point (PDP)

Accounting ledger

Trust score 
+ 

Explanation
Explainability

User

User

Fig. 1: Architecture

Resources: The protected assets that users seek to access,
which may include both physical and virtual elements such as
services, applications, or infrastructure components.

Users: These are individuals or entities interacting with the
system, either by requesting access to resources or by mod-
ifying/creating policies to meet operational needs. In certain
contexts, a network entity may serve as either a resource or a
user in the decision-making process for access control.

Identity Provider (IdP): A centralized service responsible
for identity management, ensuring consistent authentication
and identity verification across different systems and services.

Policy Enforcement Point (PEP): The first line of defense
in access control, responsible for intercepting user access
requests and enforcing security policies. It ensures that only
authorized users can proceed with their access requests, based
on decisions made by the Policy Decision Point (PDP).

Policy Decision Point (PDP): The core component that
makes access control decisions. The PDP evaluates access
requests against predefined policies and determines whether
access should be granted or denied. Unlike traditional models,
the PDP in DEBAC incorporates real-time user behavior pat-
terns into the decision-making process, ensuring that access is
granted not only based on static features but also on contextual
and behavioral factors.

Policy Administration Point (PAP): This component is
responsible for creating, managing, and modifying access
policies. The PAP enables dynamic adjustments to policies
based on evolving security conditions, contextual changes, or
specific requirements from data owners.

Accounting Ledger: This ledger records all the activities,
ensuring traceability, auditability, and compliance with security
regulations.

Explainability: A key element in behavior-aware access
control, this module continuously monitors user activity pat-
terns to assess if their behavior aligns with expectations for the
resource they are requesting. By leveraging ML techniques, it
detects anomalies and deviations from typical usage patterns,
assisting the PDP in making informed, context-aware access
decisions.

B. Behavioral profiles for policy Adaptation

We rely on a behavioral Trust Level to evaluate whether a
device’s current behavior aligns with its historical patterns. To
address cold-start scenarios with no prior data, we propose a
gradual deployment strategy. Existing logs are analyzed before
DEBAC becomes fully operational, progressively establishing
behavioral profiles. The Trust Level detects deviations in
typical user behavior and enables dynamic policy adjustments
by building profiles based on past network activity, generating
expected behaviors for comparison. These profiles are tailored
to specific scenarios, as demonstrated in the proof of concept
in Section III. Access requests are evaluated by comparing
observed behaviors with these established profiles.

DEBAC computes two profiles for each device using
observed features: a historical profile, representing expected
behavior based on past activity, and a real-time profile, re-
flecting current activity during the time window. The model
compares these profiles to compute a trust score, quantifying
the alignment between current and historical behavior. This
score is derived using both numerical and categorical features.

• For numerical features, e.g., time of connection or
session length, the model computes the difference
between the observed and the expected values.

• For categorical features, e.g., most used APs or HTTP
User-Agent strings, the model computes the intersec-
tion size of the historical and the real-time profile.

The key insight behind DEBAC (validated in the proof
of concept) is that a properly defined collection of features
can uniquely identify a user or a device while supporting
explainability. We note that some patterns, like arrival times,
are more likely to quickly emerge (e.g., users with a pre-
defined schedule), while others could take longer to emerge
and may change over time (e.g., set of preferred locations).
To account for this, we continuously monitor and update these
features, ensuring that profiles are only used for comparison
once they are sufficiently established, and updating them as
needed.

C. Policy Decisions and Explanations

To compare the historical and real-time profiles, we rely on
Explainable Boosting Machines (EBMs) [4], an interpretable
ML model that balances accuracy and transparency. EBMs
are based on Generalized Additive Models (GAMs), where
predictions are expressed as a sum of feature-specific func-
tions: g(E[Y ]) = f1(X1) + f2(X2) + · · · + fn(Xn). Each
feature contributes independently through a learned function,
making the decision process interpretable. These functions are
trained using gradient boosting, where shallow decision trees
iteratively minimize loss, refining each feature function in
cycles. Unlike traditional GAMs, EBMs allow limited pairwise



interactions (fi,j(Xi, Xj)), incorporating only the most rele-
vant ones. This structure enables EBMs to capture non-linear
dependencies while maintaining explainability.

In DEBAC, the EBM takes two input profiles: the historical
profile from the repository and the real-time profile from
the current session. It then compares them using behavioral
features to assess their similarity. The trust score represents the
probability that both profiles belong to the same user. A trust
score close to one indicates that the device’s current behavior
aligns with its historical pattern, while a trust score close
to zero suggests deviations that may require further security
actions.

Using an explainable model is critical for both decision-
making and forensic analysis. When a device is assigned
a low trust score, the EBM can point specific behavioral
discrepancies such as, e.g., an unusual login time, access to
previously unused communication ports, or a switch in the list
of frequently visited APs. These insights enable administrators
to make informed security decisions, such as adjusting policies,
triggering re-authentication, or investigating potential security
threats.

D. A Dynamic PDP based on behavioral insights

Traditional access control mechanisms rely on static poli-
cies, requiring manual intervention to update rules as security
conditions change. This approach is slow, error-prone, and
ineffective against advanced threats like identity impersonation
attacks. In contrast, DEBAC enhances access control by inte-
grating real-time behavioral insights, enabling dynamic and
adaptive policy enforcement.

As introduced earlier, our model builds behavioral profiles,
compares real-time activity against historical patterns, and
generates a Trust Level (ranging from 0 to 1) to quantify how
expected a user’s behavior is. This score directly influences
access decisions, allowing policies to adapt dynamically based
on real-time security analysis.

At the core of this approach, the Policy Decision Point
(PDP) evaluates access requests in real time by integrating
insights from the Explainability module. It allows to refines
policies based on behavioral metrics, which vary depending on
the specific use case. For example, it may consider timestamp
deviations, IP address patterns, or other behavioral indicators to
ensure flexible, fine-grained, and context-aware access control.

To achieve this, our framework adopts Policy as Code
(PaC) with Rego1, enabling automated, explainable, and au-
ditable policy adaptation. PaC treats access control policies
as code, allowing them to be written, stored, and evaluated
programmatically. We implement this approach using Rego, a
declarative language designed for policy definition and eval-
uation. Unlike imperative programming, which follows step-
by-step procedures, Rego uses logic-based rules to specify the
conditions that must be met, ensuring a more adaptable and
expressive access control mechanism.

The PDP in DEBAC is designed to:

• Use behavioral insights from the Explainability mod-
ule to adjust access conditions dynamically.

1https://www.openpolicyagent.org/docs/latest/policy-language/

• Leverage Policy as Code (PaC) [5] to define, modify,
and enforce policies in a version-controlled manner.

• Support fine-grained access control, considering fea-
tures, roles, real-time contextual factors, and devia-
tions from historical behavior.

In Box II.1 we implement a Rego policy example which
models an access control mechanism where a user must satisfy
certain conditions to gain access to a resource. This access is
evaluated dynamically based on real-time information from the
Explainability module.

Box II.1: Rego Policy Example

1 default allow = false
2 claims := payload if {
3 [_, payload, _] := io.jwt.decode(

bearer_token)
4 }
5 bearer_token := t if {
6 v = input.request.headers.

authorization
7 startswith(v, "Bearer ")
8 t = substring(v, count("Bearer ")

, -1)
9 }

10 is_admin if claims.realm_access.roles
[_] == "admin"

11 behavior_data := http.send({
12 "method": "GET",
13 "url": "https://example.com/

behavior",
14 "query": {
15 "user_id": claims.id
16 }
17 }).body
18 behavior_verified if {
19 behavior_score := behavior_data.

score
20 behavior_score > 0.8
21 }
22 ip_verified if {
23 ip_deviation := behavior_data.

ip_deviation
24 ip_deviation <= behavior_data.

allowed_ip_deviation
25 }
26 allow if {
27 input.request.path == "/resource"
28 is_admin
29 behavior_verified
30 ip_verified
31 }
32 status_code := 200 if {
33 allow
34 } else := 403

The following is a step-by-step explanation of how the
policy operates.

1. Bearer Token Extraction and Validation: First, the
policy extracts the Bearer token from the Authorization header
in the incoming request (Lines 5–9). The Bearer token is then
decoded to extract the claims (Lines 2-4), which contain the



user’s information. Although the actual verification process is
simplified here for illustration, it typically involves checking
the token’s signature using a public key.

2. Role Authorization: The policy checks if the user’s role
allows them to access the requested resource. In this case, it
checks whether the user has the ”admin” role (Line 10), which
is a requirement for accessing the resource.

3. Behavior Verification: The policy then sends a request
to the Explainability module (a separate service) to retrieve
the user’s behavior data based on their ID (Lines 11-17). This
data includes a behavior score, which reflects the user’s past
actions and patterns. If the user’s behavior score is greater
than a predefined threshold (e.g., 0.8, checked in Line 20), the
policy considers the behavior acceptable.

4. IP Deviation Check: In addition to behavior verification,
the policy checks whether the IP address from which the
request is coming is within an acceptable range (Lines 22-
25). This check ensures that access is being requested from a
familiar or trusted network location.

If all conditions are met (valid token, role authorization,
behavior verification, and acceptable IP address), the user is
granted access to the resource (Lines 26-31). If any of the
conditions fail, access is denied, and an HTTP status code of
403 (Forbidden) is returned (Lines 32-34).

III. PROOF OF CONCEPT

In this section, we validate the feasibility of DEBAC by
implementing a proof of concept of the explainability module
and test it using real-life data from a campus WLAN. More
specifically, we focus on assessing whether the explainability
module, combined with the accounting ledger, is able to
accurately interpret and compare different device behaviors,
so as to provide a trust level to an observed trace.

We focus on a campus WLANs since they provide a rich
environment: they must support both institutional and personal
devices, creating security challenges due to high mobility and
varying access privileges. Robust access control is therefore
crucial to detecting threats such as privilege escalation, unau-
thorized access, and lateral movement. For example, if a device
that typically operates within a known IP range suddenly
accesses restricted resources from an unfamiliar IP, this may
indicate credential misuse, VPN tunneling, or an attempt to
bypass access controls.

To model and assess the trustworthiness of devices within
the WLAN, we extract a set of key behavioral features
that capture both spatiotemporal patterns and network usage
characteristics. These variables serve as the foundation for
constructing the profiles:

• Time of First Connection (tarrival) The time a
device first connects each day, helping to establish a
temporal usage pattern.

• Most Frequently Visited APs (topAPs) The top
3 APs a device connects to, capturing its typical
movement across campus.

• HTTP User-Agent (http) The most frequently used
HTTP User-Agent string assigned to the device, repre-

senting its browsing behavior and operating environ-
ment.

• Assigned IP Addresses (IP) The top 3 internal
and external IPs assigned to the device, capturing its
typical network presence.

• Ports Used (Port) The 3 most frequently accessed
network ports, indicating the device’s typical service
interactions.

These behavioral features allow the model to build a
detailed profile for the typical activity of each device, which
provides a solid baseline for comparison. Rather than directly
searching for anomalies, the system focuses on understanding
what is normal for each device—its usual connection times,
frequently visited access points, common protocols, and inter-
action patterns. By continuously updating these profiles, the
model enables a more nuanced assessment of behavior. To
ensure security measures are applied only when necessary, the
system continuously compares a device’s current activity with
its established behavioral pattern. If a significant deviation is
detected, the system will either allow or deny access based
on the severity of the deviation. If the deviation is deemed
suspicious, access will be denied to ensure security.

A. Dataset

The dataset for this study is based on the RADIUS ac-
counting logs from authentication service. Each day, around
10,000 users connect to the network via the approx. 300 APs
deployed across campus. On average, a user connects to 14
different APs per day, expanding to 30 APs over a week, with
this number stabilizing after two weeks. This indicates that
a device’s mobility pattern becomes well-defined within two
weeks. Similar stabilization is observed in other behavioral
attributes, such as IP address ranges or time of arrival, con-
firming that device behavior can be effectively profiled within
this time window.

B. Performance Evaluation

To evaluate the model’s effectiveness in classifying device
behavior and computing a trust level, we rely on the accuracy
and the F1 score. The accuracy measures the proportion of
correctly classified instances, while the F1 score balances
precision and recall, ensuring a well-calibrated distinction be-
tween expected and unexpected behavior. Our model achieves
an accuracy of 94.3% and an F1 score of 95%, confirming its
ability to accurately assess device behavior while minimizing
unnecessary alerts.

C. Trust Assessment and Explanations

In this section, we analyze the explanations provided by the
model when assigning trust to a device. These explanations can
be (1) global, representing the overall importance the EBM
assigns to each behavioral feature, computed as the average
contribution of each feature across all predictions; or (2) local,
indicating the specific factors that influenced the Trust Level
for an individual device at a given moment, computed based
on the feature contributions for that particular instance.

Figure 2 shows the Global Feature Importance assigned by
the model, indicating which variables are used for predictions.



The figure includes both the importance of individual variables
and the impact of pairwise feature interactions, as discussed
in Section II-C. The results reveal that the most influential
factor is the difference in IP addresses between compared
profiles. This is likely because users typically connect from a
consistent set of IPs, and when profiles have distinct IP sets,
the model can quickly determine that they belong to different
users. Similarly, http metadata plays a key role, as it serves as
an identifier of a device’s browsing behavior. The model relies
heavily on this feature, particularly when there are significant
differences or unexpected similarities between profiles.

0.0 0.5 1.0 1.5 2.0
Importance Score

IP
http

topAPs
Port

tarrival
Port & IP

tarrival & IP
topAPs & http

IP & http
Port & http

Fe
at

ur
es

Fig. 2: Global Feature importance of the EBM.

As discussed, the model also provides explanations for
specific instances, allowing for a more detailed analysis of its
decisions and supporting forensic investigations. Figure 3 illus-
trates one particular example where the behavior of a device
on a given day is compared to its historical behavior stored
in the Accounting Ledger. The figure presents the relevant
features along with their positive and negative contributions
to the Trust Level. Positive scores indicate alignment with the
historical profile, while negative scores highlight deviations
that may lower trust.

The explanation reveals that the model tends to classify
these two profiles as belonging to the same user when there
is an overlap in http metadata, IP addresses, and topAPs
used. For instance, despite a 6-hour difference in the time of
arrival, the model assigns a high Trust Level (0.994) to the
device, indicating that its network behavior remains consistent,
reinforcing its identity.

0.5 0.0 0.5 1.0 1.5 2.0
Importance Score

http

IP

topAPs

tarrival

Port

Be
ha

vi
or

 M
et

ric

2.00

1.00

1.00

-6.53

0.00

Va
lu

es

Fig. 3: Explanation provided by the EBM for a specific
instance.

D. Dynamic Trust Assessment

To further understand how our model dynamically assesses
device behavior, we analyze how a device’s trust level evolves

over a day. This analysis provides insight into how behavioral
deviations influence the model’s trust assessment in real-time
and highlights the most relevant factors driving changes in trust
levels.

Figure 4a and Figure 4b illustrate the trust level assigned to
two different devices when compared with their profiles in the
Accounting Ledger, evaluated every 10 minutes. The results
highlight the dynamic nature of trust assessment, revealing
distinct behavioral patterns. During Stable Trust Periods, when
a device follows its expected behavior—such as connecting at
usual times and using common access points and ports—its
Trust Level remains high and stable, ensuring uninterrupted
access. However, Gradual trust Shifts occur over the day,
where minor deviations, such as roaming across campus and
connecting through a different IP address, lead to slight trust
adjustments.

07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00
Time

0.00
0.25
0.50
0.75
1.00

Tr
us

t L
ev

el

(a)

08:00 09:00 10:00 11:00 12:00 13:00 14:00
Time

0.00
0.25
0.50
0.75
1.00

Tr
us

t L
ev

el

(b)

Fig. 4: Trust Level assigned to two devices as a function of
the time.

For example, Figure 4a shows a device with a Trust Level
that increases over time. To understand what influenced these
changes, we analyze the Trust Level explanations provided by
the model. As shown in Figure 5a, the initial Trust Level is
low because the device connects to unfamiliar APs and uses IP
addresses it has not previously used. However, after remaining
on the network for a few hours (Figure 5b), the Trust Level
gradually increases and stabilizes as the device connects to its
commonly visited APs and its http User-Agent matches its
historical profile. Once its behavior aligns with past patterns,
the Trust Level remains high and stable, indicating that its
activity stays within expected behavioral bounds.

Moreover, in the case shown in Figure 4b, where the device
loses trust, the explanations reveal that this loss occurs because
the device spends more time connected to previously unvisited
APs.

These results illustrate the ability of EBMs to support
DEBAC in making dynamic and explainable decisions, ensur-
ing that access control policies can adapt based on real-time
behavioral analysis while providing clear justifications for trust
evaluations.

IV. RELATED WORK

Machine Learning-Based Access Control. To overcome
the limitations of static access control models, researchers



-2.5 -2.0 -1.5 -1.0 -0.5
Importance Score

IP

http

Port

topAPs

tarrival

Be
ha

vi
or

 M
et

ric
0.00

1.00

0.00

0.00

0.75

Va
lu

es

(a) Explanation of the Trust at 7:00.

-2.0 -1.0 0.0 1.0 2.0
Importance Score

topAPs

IP

http

Port

tarrival

Be
ha

vi
or

 M
et

ric

2.00

0.00

2.00

2.00

0.38

Va
lu

es

(b) Explanation of the Trust at 13:00.

Fig. 5: Explanations of the Trust Level for the trace in Fig 4a.

have introduced trust-based and behavior-aware access control
frameworks. One study proposes a hybrid trust model that
combines RBAC and ABAC, incorporating behavioral analysis
to assess user trust dynamically [6]. This approach monitors
access patterns in real time, detecting anomalies in spatial
and temporal activity to adjust permissions accordingly. Unlike
static policies, this model adapts dynamically to security risks,
reducing reliance on manual intervention.

Expanding on this idea, another study introduces
Attribute/Behavior-Based Access Control (ABBAC), which
extends ABAC by integrating user behavior analysis [7].
ABBAC processes log data to detect deviations in access
patterns, allowing it to identify suspicious behavior even from
authorized users. By utilizing machine learning techniques
such as Random Forest and k-Nearest Neighbors, ABBAC
enhances real-time anomaly detection, preventing unauthorized
access that might bypass conventional attribute-based policies.

Explainability in Machine Learning for Security. As
machine learning models become increasingly integrated into
security applications, ensuring explainability is essential for
trust and usability. A study on Trust-Based Access Control in
Cloud Computing introduces a machine learning-based trust
evaluation strategy that predicts trust values using K-Nearest
Neighbors, Decision Trees, Logistic Regression, and Naı̈ve
Bayes [8]. Their results show improved efficiency and lower
error rates compared to static models

Another study highlights the importance of explainability
in network traffic classification, demonstrating how feature
attribution techniques such as SHAP (Shapley Additive Expla-
nations) improve security monitoring [9]. Similarly, explainer-
agnostic frameworks have been introduced to evaluate the qual-
ity and stability of explanations across different ML models,
ensuring that security-related predictions are not only accurate
but also intelligible to administrators [10].

Our work builds on these advancements by integrating ex-
plainable ML techniques into access control, ensuring that trust
scores and access decisions remain interpretable. By lever-
aging Explainable Boosting Machines (EBMs), we provide
transparent decision-making while maintaining the predictive
power of machine learning. Unlike traditional anomaly detec-
tion systems, our model focuses on understanding deviations,
allowing for fine-grained access control adjustments based on
explainable insights.

V. CONCLUSIONS AND FUTURE WORK

In this work we presented a dynamic access control
model based on device behavior analysis and explainable
machine learning techniques. The proposed architecture al-
lows for continuous evaluation of device behavior in network
environments, enabling more adaptive and transparent access
decisions. The evaluation conducted in a WLAN environment
has demonstrated that the system effectively detects deviations
in behavioral patterns and an example of a dynamic access
control policy to enhance security. Additionally, the model
provides interpretable explanations for its decisions, offering
valuable insights for security administrators.

As future work, we plan to implement the presented archi-
tecture to evaluate the integration between the Explainability
module and the Policy Decision Point. In addition, we intend
to explore new use cases, which may require more complex
models to adapt to varying security needs. Additionally, we
intend to integrate our approach with other threat detection
systems to enhance its ability to identify emerging security
risks.

ACKNOWLEDGMENT

The research is supported by the iTrust6G project, Grant
agreement N 101097083.

REFERENCES

[1] R. Sandhu, D. Ferraiolo, and R. Kuhn, “The nist model for role-based
access control: towards a unified standard,” in RBAC ’00. New York,
NY, USA: Association for Computing Machinery, 2000, p. 47–63.
[Online]. Available: https://doi.org/10.1145/344287.344301

[2] V. Hu and D. Ferraiolo, “Guide to attribute based access control
(abac) definition and considerations - nist special publication 800-
162,” January 2014, accessed: 2025-01-31. [Online]. Available:
https://doi.org/10.6028/NIST.SP.800-162

[3] M. Pawlicki, A. Pawlicka, R. Kozik, and M. Choraś, “Explainability
versus security: The unintended consequences of xai in cybersecurity,”
in SecTL ’24. New York, NY, USA: Association for Computing
Machinery, 2024, p. 1–7. [Online]. Available: https://doi.org/10.1145/
3665451.3665527

[4] Y. Lou, R. Caruana, J. Gehrke, and G. Hooker, “Accurate intelligible
models with pairwise interactions,” in KDD ’13. New York, NY, USA:
Association for Computing Machinery, 2013, p. 623–631. [Online].
Available: https://doi.org/10.1145/2487575.2487579

[5] P. A. Networks, “What is policy-as-code?” [Online]. Available:
https://www.paloaltonetworks.com/cyberpedia/what-is-policy-as-code

[6] H. Zhang, G. Wen, D. Liu, and G. Dong, “A dynamic access
control method based on user behavior trust evaluation in edge cloud
environment,” in AIBDF ’23. New York, NY, USA: Association
for Computing Machinery, 2024, p. 92–97. [Online]. Available:
https://doi.org/10.1145/3660395.3660412

[7] M. Afshar, S. Samet, and H. Usefi, “Incorporating behavior in attribute
based access control model using machine learning,” in 2021 IEEE
International Systems Conference (SysCon), 2021, pp. 1–8.

[8] P. M. Khilar, V. Chaudhari, and R. R. Swain, Trust-Based
Access Control in Cloud Computing Using Machine Learning. Cham:
Springer International Publishing, 2019, pp. 55–79. [Online]. Available:
https://doi.org/10.1007/978-3-030-03359-0 3

[9] S. N. Zeleke, A. F. Jember, and M. Bochicchio, “Integrating explainable
ai for effective malware detection in encrypted network traffic,” arXiv
preprint arXiv:2501.05387, 2025.

[10] C. E. M. VILLALOBOS, K. D. Costa, B. Modenesi, and
A. Koshiyama, “Evaluating explainability in machine learning
predictions through explainer-agnostic metrics,” 2024. [Online].
Available: https://openreview.net/forum?id=U4hrISfFKs

https://doi.org/10.1145/344287.344301
https://doi.org/10.6028/NIST.SP.800-162
https://doi.org/10.1145/3665451.3665527
https://doi.org/10.1145/3665451.3665527
https://doi.org/10.1145/2487575.2487579
https://www.paloaltonetworks.com/cyberpedia/what-is-policy-as-code
https://doi.org/10.1145/3660395.3660412
https://doi.org/10.1007/978-3-030-03359-0_3
https://openreview.net/forum?id=U4hrISfFKs

	Introduction
	Proposed Framework
	Architecture
	Behavioral profiles for policy Adaptation
	Policy Decisions and Explanations
	A Dynamic PDP based on behavioral insights

	Proof of Concept
	Dataset
	Performance Evaluation
	Trust Assessment and Explanations
	Dynamic Trust Assessment

	Related Work
	Conclusions and Future Work
	References

