
Optimising 5G infrastructure markets:
The Business of Network Slicing

Dario Bega∗, Marco Gramaglia∗, Albert Banchs∗, Vincenzo Sciancalepore†, Konstantinos Samdanis‡ and
Xavier Costa-Perez†

∗Institute IMDEA Networks and University Carlos III of Madrid, Madrid, Spain
Email: {dario.bega, marco.gramaglia, albert.banchs}@imdea.org

†NEC Laboratories Europe, Heidelberg, Germany, Email: {vincenzo.sciancalepore, xavier.costa}@neclab.eu
‡Huawei Technologies, Munich, Germany, Email: konstantinos.samdanis@huawei.com

Abstract—In addition to providing substantial performance
enhancements, future 5G networks will also change the mobile
network ecosystem. Building on the network slicing concept, 5G
allows to “slice” the network infrastructure into separate logical
networks that may be operated independently and targeted at
specific services. This opens the market to new players: the
infrastructure provider, which is the owner of the infrastructure,
and the tenants, which may acquire a network slice from the
infrastructure provider to deliver a specific service to their
customers. In this new context, we need new algorithms for the
allocation of network resources that consider these new players.
In this paper, we address this issue by designing an algorithm for
the admission and allocation of network slices requests that (i)
maximises the infrastructure provider’s revenue and (ii) ensures
that the service guarantees provided to tenants are satisfied.
Our key contributions include: (i) an analytical model for the
admissibility region of a network slicing-capable 5G Network, (ii)
the analysis of the system (modelled as a Semi-Markov Decision
Process) and the optimisation of the infrastructure provider’s
revenue, and (iii) the design of an adaptive algorithm (based on
Q-learning) that achieves close to optimal performance.

I. INTRODUCTION

By leveraging on novel concepts of virtualization and
programmability, future 5G Networks [1] are expected to
be reliable, high-performing and cost-efficient. However, the
scope of 5G goes beyond just pure performance metrics, and
incorporates profound changes in its architecture design which
will change the mobile network ecosystem. One of the key
novel concepts of the 5G architecture is that of Network
Slicing [2], driven by very diverse requirements demanded by
5G. Indeed, there is a consensus in that accommodating such
heterogeneous services using the same infrastructure will not
be possible with the current, relatively monolithic architecture
in a cost efficient way. In contrast, with network slicing the
infrastructure can be divided in different slices, each of which
can be tailored to meet specific service requirements.

With network slicing, different services (such as, e.g., auto-
motive, mobile broadband or haptic Internet) can be provided
by different network slice instances. Each of these instances
consists of a set of virtual network functions that run on the
same infrastructure with a especially tailored orchestration. In
this way, very heterogeneous requirements can be provided by
the same infrastructure, as different network slice instances
can be orchestrated and configured according to their specific

requirements. Additionally, this can be performed in a cost-
efficient manner, as the different network slice tenants dynam-
ically share the same infrastructure.

This novel approach does not just provide better performing
and more efficient networks, but it also makes room for
new players in the mobile network ecosystem. Network slices
allow for a role separation between infrastructure providers
(the ones who provide computational and network resources
used by different network slices) and network slice tenants
(the ones acquiring a slice to orchestrate and run network
functions within that slice to provide a certain service to their
customers).

The above model is currently being successfully applied by
Infrastructure as a Service (IaaS) providers such as Amazon
Web Services or Microsoft Azure, which sell their computa-
tional resources such as CPU, disk or memory for Virtual Net-
work Function (VNF) purposes. While such an IaaS approach
follows a very similar business model to ours, providing
network resources is an intrinsically different problem, since
(i) spectrum is a scarce resource for which over-provisioning
is not possible, (ii) the actual capacity of the systems (i.e.,
the resources that can actually be sold) heavily depends
on the mobility patterns of the users, and (iii) the Service
Level Agreements (SLAs) with network slices tenants usually
impose stringent requirements on the Quality of Experience
(QoE) perceived by their users. Therefore, in contrast to IaaS,
in our case applying a strategy where all the requests coming to
the infrastructure provider are admitted is simply not possible.

In the above context, the new 5G ecosystem calls for novel
algorithms and solutions for the allocation of the (scarce) net-
work resources among tenants; this is the so-called spectrum
market. In this paper we address this problem by designing
a network capacity brokering solution, implemented by an
infrastructure provider, that assigns resources to tenants and
their respective network slices. When taking the decision of
whether to admit or reject new network slices requests (and the
associated resources), our solution aims at (i) maximising the
revenue of a network infrastructure provider, and (ii) satisfying
the service guarantees provided to the network slices.

While the network slicing concept has only been proposed
recently [2], it has already attracted substantial attention.
3GPP has started working on the definition of requirements

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

978-1-5090-5336-0/17/$31.00 ©2017 IEEE



for network slicing [3], whereas NGMN identified network
sharing among slices (which is the focus of this paper) as one
of the key issues to be addressed [4]. Despite these efforts,
most of the work has focused on architectural aspects [5], [6]
with only a limited focus on resource allocation algorithms.
While there is a body of work on the literature on spectrum
sharing (see e.g. [7]–[10]), these proposal are not tailored to
the specific requirements of the 5G ecosystem.

The rest of the paper is structured as follows. We first
introduce our system model in Section II. In Section III
we conduct a performance analysis of our system in order
to determine the amount network slice requests that can be
sold by the infrastructure provider while meeting the service
guarantees of the corresponding traffic types. Building on this
model, in Section IV we address the problem of designing
an admission control algorithm that maximises the infras-
tructure provider revenue while satisfying the desired service
guarantees; to this end, we first analyse the revenue resulting
from a given admission control policy and then obtain the
optimal policy that maximises the resulting revenue. Building
on this analysis, in Section V we design a practical adaptive
algorithm that provides a performance close to that of the
optimal admission policy. The performance of the adaptive and
optimal algorithms are thoroughly evaluated via simulation in
Section VI, and the paper concludes with some final remarks
in Section VII.

II. SYSTEM MODEL

In the following, we describe the various aspects related to
our system model.
Players. In our system model, there are the following players:
(i) the infrastructure provider, who is the owner of the network
and provides network slices corresponding to a certain fraction
of network resources to the tenants, (ii) the tenants, which
issue requests to the infrastructure provider to acquire network
resources, and use these resources to serve their users, and
finally (iii) the end-users, which are served by their tenant or
operator and run their applications in the tenant’s slice.
Network model. Our network is composed of a set of base
stations B. For each base station b ∈ B, we let Cb denote the
base station capacity. We further refer to the system capacity
as the sum of the capacity of all base stations, C =

∑
B Cb.

We let U denote the set of users in the network.1 We consider
that each user u ∈ U in the system is associated to one base
station b ∈ B, each of them with a nominal transmission rate
Cb. We denote by fub the fraction of the resources of base
station b assigned to user u, leading to a throughput for user
u of ru = fubCb. We also assume that users are distributed
among base stations with fixed probability Pb. Without loss
of generality, unless otherwise stated we will assume uniform
distributions: that is, a given user u ∈ U is associated with
base station b ∈ B with Pb = 1/|B|.
Traffic model. In this paper we focus on elastic and inelastic
traffic. We let I denote the set of users that demand inelastic

1The users of the network are the end-users we referred to above, each of
them being served by one of the tenants.

traffic, and E the set of users that demand elastic traffic.
Inelastic users required a certain fixed throughput demand Ri
which needs to be always satisfied with a fixed predetermined
(small) outage probability Pout. In contrast to inelastic users,
elastic users do not require any instantaneous throughput
guarantees, but only average ones: they require that their
expected average throughput over long time scales is above a
certain threshold Re. At any given point in time, the resources
of each base stations are distributed among associated users as
follows: inelastic users u ∈ I are provided sufficient resources
to guarantee ru = Ri, while the remaining resources are
equally shared among the elastic users. In case there are not
sufficient resources to satisfy the requirements of inelastic
users, even when leaving elastic users with no throughput, we
reject as many inelastic users as needed to satisfy the required
throughput guarantees of the remaining ones.

Network slice model. The network is logically divided in
different network slices, each of them belonging to a tenant.
A network slice is characterized by (i) its traffic type (elastic
or inelastic), and (ii) its number of users. When owning the
corresponding network slice, a tenant is guaranteed that as
long as he does not introduce more users than allowed by the
slice size, its users will be provided with the service guarantees
corresponding to their traffic type. While a network slice may
be restricted to a certain geographical region (in which case
the corresponding guarantees only apply to the users residing
in the region), in this paper we focus on the general case in
which network slices comprise the entire network.

In order to dynamically allocate network slices to tenants,
we consider a bidding system in which tenants submit requests
for network slices to the infrastructure provider, which may or
may not accept these requests depending on the current load.
Such network slices requests are characterized by:

• Network slice duration t: this is the length of the time
interval for which the network slice is requested.

• Traffic type κ: according to the traffic model above, the
traffic type of a slice can either be elastic or inelastic
traffic.

• Network slice size s: the size of the network slice is given
by the number of users it should be able to accommodate.

• Price ρ: the cost a tenant has to pay for acquiring
resources for a network slice. The price is per time unit,
and hence the total cost is given by r = ρt.

The infrastructure provider defines a given set of network
slice classes, each of them with predefined values for {κ, s, ρ}.
When requiring network resources, a tenant may issue a
request for a slice of one of the available classes, indicating the
duration t for which it wishes to use the slice. Upon receiving
a request, the infrastructure provider needs to decide whether
to admit it or not, depending on the network slices already
admitted. For each class c of network slices, we assume that
requests are issued following a Poisson process of rate λc and
t values follow an exponential random variable of rate µc.

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications



III. PERFORMANCE ANALYSIS

The rest of the paper focuses on the algorithms required
by the infrastructure provider. Upon receiving a network slice
request, the infrastructure provider needs to decide whether to
admit it or not. While the goal of the infrastructure provider
when doing so is to maximise the revenue it gets from the
network, it also needs to know whether admitting a certain
request would infringe the guarantees provided to the already
admitted requests; indeed, if that was the case, the new request
would have to be rejected regardless of any revenue consider-
ations. We refer to the different combination of requests that
can be admitted while satisfying all traffic guarantees as the
admissibility region A of the system. In the following, we
provide an analysis to determine this admissibility region as
a first step towards the design of an algorithm to maximise
the infrastructure provider revenue. Note that the algorithm
addressed focuses on the admission of slices, in contrast to
traditional algorithms focusing on the admission of users;
once a tenant gets its slice admitted and instantiated, it can
implement whatever algorithm it considers more appropriate
to admit users into the slice.

A. Admissibility region

Let |E| be the number of elastic users in the system, and |I|
the number of inelastic users. We say that a given combination
of inelastic and elastic users belongs to the admissibility region
(i.e., {|I|, |E|} ∈ A) when the guarantees identified in the
above section for elastic and inelastic traffic are satisfied for
such combination of users in the network.

In order to determine whether the combination {|I|, |E|}
belongs to A, we proceed as follows. Let Ib be the number
of inelastic users associated to base station b. According to
the system model explained in Section II, when we have a
number of elastic and inelastic users at a given base station,
inelastic users are provided with a fixed throughput equal to
Ri independently of the number of elastic users in the base
station. The only case in which they are not provided with
this throughput is when the number of inelastic users itself is
too large, i.e., when it exceeds bCb/Ric. Since (according to
our inelastic traffic model) the probability that this happens
cannot exceed Pout, we have the following constraint:

P (ru < Ri) = P

(
|Ib| >

⌊
Cb
Ri

⌋)
≤ Pout, u ∈ Ib

According to our network model, users associate to base
stations with a fixed probability 1/|B|, therefore the number of
inelastic users at a base station follows a binomial distribution.
Hence, the probability that this number exceeds a certain
threshold can be computed from

P

(
|Ib| >

⌊
Cb
Ri

⌋)
=

1−

⌊
Cb
Ri

⌋
−1∑

j=0

(|I|
j

)(
1

|B|

)j (
1− 1

|B|

)|I|−j

Based on the above, the maximum number of inelastic users
that can be admitted to the system, Imax, can be obtained from
computing the largest |I| value that satisfies the following
inequality

1−

⌊
Cb
Ri

⌋
−1∑

j=0

(|I|
j

)(
1

|B|

)j (
1− 1

|B|

)|I|−j
≤ Pout

Note that Imax is independent of the number of elastic users
in the network: indeed, inelastic users preempt elastic ones
and receive the same throughput independent of the number
of elastic users present in the network.

Having computed the maximum number of inelastic users
that can be admitted, we now compute the maximum ad-
missible number of elastic users, Emax. In contrast to the
previous case, in this case the throughput available to elastic
users depends on the number of inelastic users, and hence
Emax will depend on the number of inelastic users admitted
into the network, I. Our key approximation when computing
Emax will be to assume that the density of elastic users
is sufficiently high so that the probability that there are no
elastic users in a base station can be neglected. Note that, as
elastic users consume as much throughput as possible, this
assumption implies that the capacity of all base stations will
always be fully used, i.e.,

∑
u∈I∪E ru = C. Since inelastic

users consume a fixed throughput equal to Ri, this yields∑
u∈E ru = C − |I|Ri for elastic users. Over long time

scales, all elastic users receive the same average throughput,
and hence

ru =
C − |I|Ri
|E|

If we now impose the constraint on the average throughput
of an elastic users, ru ≥ Re, and compute from the above
equation the maximum number of elastic users that can be
admitted while satisfying this constraint, we obtain the fol-
lowing expression (which depends on the number of admitted
inelastic users):

Emax(|I|) =

⌊
C − |I|Ri

Re

⌋
From the above, we have that the admissibility region
A is given by all the combinations of inelastic and elastic
users {|I|, |E|} that satisfy: (i) |I| ≤ Imax; and (ii) |E| ≤
Emax(|I|). This terminates the admissibility region analysis.

In order to evaluate the above analysis, we compared the
admissibility region obtained theoretically against the one
resulting from simulations. To this end, we considered the
scenario of ITU-T [11], which consists of |B| = 19 base
stations placed at a fixed distance of 200m. Users move in
this area covered by these base stations following the Random
Waypoint (RWP) mobility model, with a speed uniformly
distributed between 2 and 3 m/s.

The association procedure of elastic and inelastic users with
base stations is as follows. Inelastic users u ∈ I try to attach to
the nearest base station b ∈ B, if it has at least Ri capacity left.
Otherwise they do not associate and generate an outage event,

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications



0 50 100 150 200 250
|I|

50

100

150

200

250

300

350

400
|E
|

A10

A5

A20 Analytical
Simulation

Fig. 1: Admissibility region: analysis vs. simulation.

joining again the network when their throughput guarantee can
be satisfied. When associating, they consume a capacity Ri
from the base station. Similarly, elastic users always associate
to the nearest base station. All the elastic users associated with
a base station, u ∈ Eb, fairly share among them the capacity
left over by inelastic users. Upon any association event, the
throughput received by the users associated to the new and the
old base station changes accordingly.

Following the above procedure, we have simulated all the
possible combinations of inelastic and elastic users, {I, E}.
For each combination, we have evaluated the average through-
put received by elastic users, computed over samples of 10
seconds time windows, and the outage probability Pout of
inelastic users, computed as the fraction of time over which
they do not enjoy their guaranteed throughput. If these two
metrics (average elastic traffic throughput and inelastic traffic
outage probability) are within the guarantees provided to
the two traffic types, we place this combination inside the
admissibility region, and otherwise we place it outside.

Fig. 1 shows the boundaries of the admissibility region
obtained analytically and via simulation, respectively, for
different throughput guarantees for elastic and inelastic users
(A5 : Ri = Re = Cb/5, A10 : Ri = Re = Cb/10 and
A20 : Ri = Re = Cb/20) and Pout = 0.01. We observe
that simulation results closely match analytical ones, which
confirms the accuracy of our analysis. We further observe that
the admissibility region is limited by the most restrictive of
the following conditions: (i) the maximum number of inelastic
users that can be admitted, (ii) the sum of inelastic and elastic
users, which has to be below a maximum number as well.

IV. OPTIMAL ADMISSION ALGORITHM

While the admissibility region computed above provides
the maximum number of elastic and inelastic users that can
be admitted, an optimal admission algorithm that aims at
maximising the revenue of the infrastructure provider may not
always admit all the requests that fall within the admissibility
region. Indeed, when the network is close to congestion,
admitting a request that provides a lower revenue may prevent
the infrastructure provider from admitting a future request
with a higher revenue associated. Therefore, the infrastructure

provider may be better off by rejecting the first request with
the hope that a more profitable one will arrive in the future.

In the following, we derive the optimal admission policy
that maximises the revenue of the infrastructure provider.
We first present an analysis of the revenue obtained by the
infrastructure provider as a function of the admission policy,
and then build on this analysis to find the optimal admission
policy.

A. Revenue analysis

To analyse the revenue obtained by the infrastructure
provider, we model our system as a Semi-Markov Decision
Process (SMDP).2 For simplicity, we first model our system
for the case in which there are only two classes of slice
requests of fixed size s = 1, i.e., for one elastic user or for one
inelastic user. Later on, we will show how the model can be
extended to include an arbitrary set of network slice requests
of different sizes.

The Markov Decision Process theory [14] models a system
as: (i) a set of states s ∈ S, (ii) a set of actions a ∈ A, (iii) a
transition function P (s, a, s′), (iv) a time transition function
T (s, a), and (v) a reward function R (s, a). At each event, the
system can be influenced by taking one of the possible actions
a ∈ A. According to the chosen actions, the system earns the
associated reward function R (s, a), the next state is decided
by P (s, a, s′) while the transition time is defined by T (s, a).

The inelastic and elastic network slices requests follow two
Poisson processes Pi and Pe with associated rates of λi and
λe, respectively. When admitted into the system, the slices
occupy the system resources according to an exponentially
distributed time of average 1

µi
and 1

µe
. Additionally, they

generate a revenue per time unit for the infrastructure provider
of ρi and ρe. That is, the total revenue r generated by an e.g.,
elastic request with duration t is tρe.

We define our space state S as follows. A state s ∈ S is a
three-sized tuple (ni, ne, k | ni, ne ∈ A) where ni and ne are
the number of inelastic and elastic slices in the system at a
given decision time t, and k ∈ {i, e, d} is the next event that
triggers a decision process. This can be either a new arrival of
a network slice request for inelastic and elastic slices (k = i
and k = e, respectively), or a departure of a network slice of
any kind that left the system (k = d). In the latter case, ni and
ne represent the number of inelastic and elastic slices in the
system after the departure. Fig. 2 shows how the space state
S relates to the admissibility region A.

The possible actions a ∈ A are the following: A = G,D.
The action G corresponds to admitting the new request of an
elastic or inelastic slice; in this case, the resources associated
with the request are granted to the tenant and the revenue
r = ρi,et is immediately earned by the infrastructure provider.
In contrast, action D corresponds to rejecting the new request;
in this case, there is no immediate reward but the resources
remain free for future requests. Note that upon a departure

2This technique has already been used to address different admission control
problems (see, e.g., [12], [13]).

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications



Admit	an	elastic	slice

Admit	an	inelastic	slice

Departure	of	an	inelastic	slice

Departure	of	an	elastic	slice

Admissibility	
Region

0,1,k

0,0,k

0,3,k

0,2,k

0,4,k

1,0,k 2,0,k 3,0,k

1,1,k 2,1,k 3,1,k

2,2,k1,2,k

1,3,k

Increasing

In
cr
ea
sin

g

Fig. 2: Example of system model with the different states.

(k = d), the system is forced to a fictitious action D that
involves no revenue. Furthermore, we force that upon reaching
a state in the boundary of the admissibility region computed
in the previous section, the only available action is to reject
an incoming request (a = D) as otherwise we would not be
meeting the committed guarantees. Requests that are rejected
are lost forever.

The transition rates between the states identified above are
derived next. Transitions to a new state with k = i and k = e
happen with a rate λi and λe, respectively. Additionally, states
with k = d are reached with a rate niµi + neµe depending
the number of slices already in the system. Thus, the average
time the system stays at state s, T̄ (s, a) is given by

T̄ (s, a) =
1

υ (ni, ne)

where ni, and ne are the number of inelastic and elastic slices
in state s and υ (ni, ne) = λi + λe + niµi + neµe.

We define a policy π (S), π (s) ∈ A, as a mapping from
each state s to an action A. Thus, the policy determines
whether, for a given number of elastic and inelastic slices in
the system, we should admit a new request of an elastic or an
inelastic slice. With the above analysis, given such a policy, we
can compute the probability of staying at each of the possible
states. Then, the long term average revenue R obtained by the
infrastructure provider can be computed as

R = P (ni, ne, k) (niρi + neρe)

where ρi and ρe are the price per time unit paid by an inelastic
and an elastic network slice, respectively.

Our ultimate goal is to find a policy π (S) that maximises
the long term average revenue. In the next section, we build
on the analysis provided here to find such an optimal policy.

B. Optimal policy

In order to derive the optimal policy, we build on Value
Iteration [15], which is an iterative approach to find the optimal
policy that maximises the average revenue of the system.
According to the revenue analysis provided in the previous

Algorithm 1 Value Iteration

1) Initialise the vector V (s) = 0, ∀s ∈ S. V (s) represents the
long term expected revenue for being in state s. Initialise the
step number n to 1.

2) Update the expected reward at time n + 1, Vn+1 (s) using
the rule

Vn+1 (s) = max
a∈A

[
R (s, a)

T (s, a)

+
τ

T (s, a)

∑
s′

P
(
s, a, s′

)
Vn

(
s′
)

+

(
1− τ

T (s, a)

)
Vn (s)

]
∀s ∈ S

3) Compute the boundaries

Mn = max
s∈S

(Vn+1 (s)− Vn (s))

mn = min
s∈S

(Vn+1 (s)− Vn (s))

and check the condition

0 ≤ (Mn −mn) ≤ εmn

4) If the condition in step 3 is not fulfilled, then repeat from
step 2

section, our system has the following transition probabilities
P (s, a, s′). For a = D, ∀s:

P (s, a, s′) =


λi

υ(ni,ne)
, s′ = (ni, ne, i)

λe

υ(ni,ne)
, s′ = (ni, ne, e)

niµi

υ(ni,ne)
, s′ = (ni − 1, ne, d)

neµe

υ(ni,ne)
, s′ = (ni, ne − 1, d)

For a = G, s = (ni, ne, i):

P (s, a, s′) =


λi

υ(ni+1,ne)
, s′ = (ni + 1, ne, i)

λe

υ(ni+1,ne)
, s′ = (ni + 1, ne, e)

(ni+1)µi

υ(ni+1,ne)
, s′ = (ni, ne, d)

neµe

υ(ni+1,ne)
, s′ = (ni + 1, ne − 1, d)

For a = G, s = (ni, ne, e):

P (s, a, s′) =


λi

υ(ni,ne+1) , s′ = (ni, ne + 1, i)
λe

υ(ni,ne+1) , s′ = (ni, ne + 1, e)
niµi

υ(ni,ne+1) , s′ = (ni − 1, ne + 1, d)
(ne+1)µe

υ(ni,ne+1) , s′ = (ni, ne, d)

Similarly, the reward function R (s, a) is given by:

R (s, a) =

{
0, a = D

tρi,e a = G

Applying the Value Iteration algorithm [15] for SMDP is
not straightforward. The standard algorithm cannot be applied
to continuous time problem as it does not consider variable
transition times between states. Therefore, in order to apply
Value Iteration to our system, an additional step is needed:
all the transition times need to be normalized as multiples

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications



Admit	an	elastic	slice

Admit	an	inelastic	slice

Departure	of	an	inelastic	slice

Departure	of	an	elastic	slice

Admissibility	
Region

Policy	Defined	Region

0,1,k

0,0,k

0,3,k

0,2,k

0,4,k

1,0,k 2,0,k 3,0,k

1,1,k 2,1,k 3,1,k

2,2,k1,2,k

1,3,k

Increasing

In
cr
ea
sin

g	

Fig. 3: Example of optimal policy for elastic and inelastic
slices.

of a faster, arbitrary, fixed transition time τ [16]. The only
constraint that has to be satisfied by τ is that it has to be faster
than any other transition time in the system, which leads to

τ < minT (s, a) , ∀s ∈ S, ∀a ∈ A

With the above normalization, the continuous time SMDP
corresponding to the analysis of the previous section becomes
a discrete time Markov Process and a modified Value Iteration
algorithm may be used to devise the best policy π (S) (see
Algorithm 1). The discretised Markov Chain will hence be
composed of transitions (at interval of τ ) that may correspond
to transitions in continuous time system or not.

The normalization procedure affects the update rule of step
2 in Algorithm 1. All the transition probabilities P (s, a, s′)
are scaled by a factor τ

T (s,a′) making them time-independent.
Also, the revenue R (s, a) is scaled by a factor of T (s, a) to
take into account the transitions in the sampled discrete time
system that do not correspond to transitions in the continuous
time one. This fact is taken into account in the last term of the
equation (i.e., in case of a fictitious transition, keep Vn (s)).

As proven in the next section, Algorithm 1 is guaranteed
to find the optimal policy π (S). Such an optimal policy is
illustrated in Fig. 3 for the case where the price of inelastic
slice is higher than that of elastic slice (ρi > ρe). The figure
shows those states for which the corresponding action is to
admit the new request (straight line), and those for which it is
to reject it (dashed lines). It can be observed that while some
of the states with a certain number of elastic slices fall into
the admissibility region, the system is better off rejecting those
requests and waiting for future (more rewarding) requests of
inelastic slice. In contrast, inelastic slice requests are always
admitted (within the admissibility region).

The analysis performed so far has been limited to network
slice requests of size one. In order to extend the analysis to
requests of an arbitrary size, we proceed as follows. We set
the space state to account for the number of slices of each
different class in the system (where each class corresponds

to a traffic type and a given size). Similarly, we compute the
transition probabilities P (s, a, s′) corresponding to arrival and
departures of different classes. With this, we can simply apply
the same procedure as above (over an extended space state)
to obtain the optimal policy.

C. Optimality and convergence analysis

In the following, we provide some insights on the opti-
mality and convergence of Algorithm 1, showing that: (i) the
algorithm converges to a certain policy, and (ii) the policy
to which the algorithm converges performs arbitrarily close
to the optimal policy. Theorem 6.6.1 in [17] proves that the
policy π (S) obtained using Algorithm 1 provides a long-run
average reward gs (π (S)) that is arbitrarily bounded by an ε
value when compared to the optimal one g∗. Thus,

0 ≤ g∗ − gs (π (S))

gs (π (S))
≤ Mn −mn

mn
≤ ε, ∀s ∈ S

The convergence of Algorithm 1 is guaranteed by the third
term of the inequality above, that acts as a decreasing envelope
of the second term, as shown by Theorem 6.6.3 in [17]:

mn+1 ≥ mn, Mn+1 ≤Mn, ∀n ≥ 1.

By applying step 3 of Algorithm 1, the obtained π (S) is ε-
bounded to the optimal. While the aforementioned Theorems
in [17] solve a cost minimisation problem, we adapted them
to our revenue maximisation scenario. In our experiments, we
set ε = 0.001.

V. ADAPTIVE ADMISSION ALGORITHM

The Value Iteration algorithm described in Section IV-B
provides the optimal policy for revenue maximisation under
the framework described of Section IV-A. While this is very
useful in order to obtain a benchmark for comparison, the al-
gorithm itself has a very high computational cost, which makes
it impractical for real scenarios. Indeed, as the algorithm has
to update all the V values V (s) , s ∈ S at each step, the
running time grows steeply with the size of the state space,
and may become too high for large scenarios.

Building on the analysis of the previous section, in the
following we design an adaptive algorithm that aims at max-
imising revenue by learning from the outcome resulting from
the previous decisions. In contrast the optimal policy of the
previous section, this algorithm is executed online while taking
admission control decisions, and hence does not require of
high computational resources.

A. Q-Learning model

Our adaptive algorithm is based on the Q-Learning frame-
work [18]. Before describing the algorithm itself, we describe
how we model the algorithm under the Q-Learning framework.

Q-Learning is a machine learning framework for designing
adaptive algorithms in SMDP-based systems such as the one
analysed in Section IV-A. It works taking decisions that move
the system to different states within the SMDP state-space
and observing the outcome. Thus, it leverages the “exploration



vs. exploitation” principle: the algorithm learns by visiting
unvisited states and takes the optimal decision when dealing
with already visited ones.

Q-Learning provides two key advantages as compared to
Value Iteration framework described in the previous section:
• The resulting algorithm is model-free. Indeed, it makes

no assumptions on the underlying stochastic processes,
but rather learns by observing the events that take place
in the system.

• It is an online algorithm (in contrast to the offline plan-
ning algorithm of the previous section). The algorithm
constantly learns the characteristics of the system by
exploring it and taking decisions.

Our Q-Learning framework builds on the SMDP-based
system model of Section IV-A. The Q-Learning space state
is similar to the one of the SMDP model:

(n?i , n
?
e, k | o (n?i , n

?
e) ∈ A)

where n?i and n?e are defined as a n-dimension tuples
(n1, n2, . . . , nc) describing the number of slices of different
sizes in the system for inelastic and elastic traffic types. Anal-
ogously, o is the occupation of the system, and k ∈ {i?, e?}
where i? and e? are the sets of events associated to an arrival
of an inelastic or elastic slice request of a given size.

With Q-Learning, we do not need to include departures in
the space state, since no decision is taken upon departures.
Similarly, we do not need to include the states in the boundary
of the admissibility region; indeed, in such states we do not
have any option other than rejecting any incoming request,
and hence no decisions need to be taken in these states
either. Furthermore, the system is not sampled anymore, as all
transitions are triggered by an arrival event and the subsequent
decision a ∈ A.

The key idea behind the Q-Learning framework is as
follows. We let Q (s, a) denote the expected reward resulting
from taking an action a at a certain state s. The system
keeps memory for each state of Q (s, a). It starts with empty
Q0 (s, a) and at the decision step n it takes an action a
based on the past estimations of Q (s, a). Hence, the system
experiences a transition from state s at the decision step n, to
state s′ at decision step n+ 1. Then, once in step n+ 1, the
algorithm has observed both the reward obtained during the
transition R (s, a) and a sample tn of the transition time. The,
algorithm updates the Q (s, a) involved in the decision process
at step n using the newly gathered reward and transition time
information. After a learning phase, the optimal admission
policy at a certain state will be the one that maximises the
resulting expected revenue, i.e.,

V (s) = max
a∈A

Q (s, a)

B. Algorithm description

Building on the above model, we describe our Q-Learning
algorithm in the following. The algorithm maintains the Q-
values which are updated iteratively following a sample-based
approach as described in Algorithm 2, in which new events

Algorithm 2 Q-Learning update procedure

1) Initialise the vector Q (s, a) = 0, ∀s ∈ S, a ∈ A.
2) An event is characterized by: s, a, s′, r, t (the starting state,

the action taken, the landing state, the obtained reward and
the transition time).

3) Update the old estimate Q (s, a) with the new sample
observation as follows:

ω = R
(
s, a, s′

)
− σtn +max

a′
Q
(
s′, a′

)
where tn is the transition time between two subsequent states
s and s′ after action a

4) Integrate the new sample in a running exponential average
estimation of Q (s, a)

Q (s, a) = (1− α)Q (s, a) + αω

are evaluated at the time when they happen. In addition to the
procedure to update the Q-values described in Algorithm 2,
the Q-Learning algorithm also relies on two other procedures:
the TD-learning and exploration - exploitation procedures.

TD-learning ensures the convergence of the algorithm by
employing the α parameter, which is the learning rate. The
requirements for setting α are two [19]: (i)

∑∞
n=0 αn = ∞

and (ii)
∑∞
n=0 α

2
n < ∞. The Q-values update process in

step 4 of Algorithm 2 needs to build a correct estimation of the
expected revenue obtained by choosing an action a while in
state s. On the one hand, new samples ω (with more updated
information) should be weighted by a larger weight than the
estimation built on all the past samples Q (s, a), especially if
the first exploration steps did not provide a good result. On
the other hand, αn coefficients have to decrease with time, in
order to eventually converge to a fixed set of Q (s, a) values.
When setting α according to these requirements, we make the
following additional considerations: too slowly descending α
sequences will delay the convergence of the algorithm, but too
fast ones may make the algorithm unaware of new choices too
soon. Based on all these requirements and considerations, we
set α = 0.5

η(s,a) , where η (s, a) is the number of times the action
a was selected, being in state s.

Exploration - exploitation drives the selection of the best
action to be taken at each time step. While choosing the
action a that maximises the revenue at each step contributes
to maximising the overall revenue (i.e., exploitation step), we
also need to visit new (still unknown) states even if this
may lead to a suboptimal revenue (i.e., exploration step).
The reason for this is that the algorithm needs to explore
all possible (s, a) options in order to evaluate the impact of
the different decisions. The trade-off between exploitation and
exploration is regulated by the γ parameter; in this paper we
take γ = 0.1 in order to force that sometimes the wrong
decision is taken and thus we learn all possible options,
which ultimately improves the accuracy of the algorithm. The
probability of taking wrong choices decreases as the αn values
become smaller, up to the point where no wrong decisions are
taken any more, once the algorithm already visited all state s
a number of times sufficiently large to learn the best Q-value.

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications



0 10 20 30 40 50 60 70 80 90
|I|

0

50

100

150

200
|E
|

ρi
ρe

= 1

ρi
ρe

= 2,3,4,5
ρi
ρe

= 10,15,20

Admissibility Region

Fig. 4: Optimal admission policy for elastic traffic.

VI. PERFORMANCE EVALUATION

In this section we evaluate the performance of the pro-
posed algorithms via simulation. Unless otherwise stated, we
consider a scenario with four slice classes, two for elastic
traffic and two for inelastic. We set µ = 5 for all network
slices classes, and the arrival rates equal to λi = 2µ and
λe = 10λi for the elastic and inelastic classes, respectively.
We consider two network slice sizes, equal to C/10 and C/20,
where C is the total network capacity. Similarly, we set the
throughput required guarantees for elastic and inelastic traffic
to Ri = Re = Cb/10. Two key parameters that will be
employed throughout the performance evaluation are ρe and
ρi, the average revenue per time unit generated by elastic
and inelastic slices, respectively (in particular, performance
depends on the ratio between them).

A. Optimal admission policy

We start by analysing the admission policy resulting from
our optimal algorithm for different ratios between ρi and ρe.
Note that, given that inelastic traffic is more demanding, it is
reasonable to assume that it pays a higher price than elastic
traffic ρi ≥ ρe. As inelastic traffic provides a higher revenue,
in order to maximise the total revenue, the infrastructure
provider will always admit inelastic network slice requests. In
contrast, it is to be expected that, while elastic traffic requests
will be admitted when the utilisation is low, they may be
rejected with higher utilisations in order to avoid losing the
opportunity to admit future (and more rewarding) inelastic
requests. Furthermore, it is to be expected that this behaviour
will be exacerbated as the ρi/ρe grows larger.

The admission policy for elastic traffic resulting from our
algorithm is shown in Fig. 4. As expected, we can observe
that the region corresponding to the admission of elastic
network slices requests is smaller than the admissibility region,
implying that we are more restrictive in the admission of
elastic traffic. Furthermore, and also as expected, this region
becomes smaller for larger ρi/ρe ratios. These results thus
confirm our intuitions on the optimal admission policy.

B. Revenue optimality

We next evaluate the performance of our adaptive algo-
rithm by comparing it against: (i) the benchmark provided

1 5 10 15 20
ρi/ρe

0

0.5

1

1.5

2

2.5

R
el

at
iv

e
re

ve
nu

e

Value Iteration
Q-Learning
Always Admit
Always Reject

Fig. 5: Revenue vs. ρi/ρe.

by the optimal algorithm, and (ii) two naive policies that
always admit elastic traffic requests and always reject them,
respectively. Fig. 5 shows the relative average reward obtained
by each of this policies, taking as baseline the policy that
always admit all network slice requests (as this would be
the most straightforward algorithm). We observe from the
figure that our adaptive algorithm performs very closely to the
optimal policy, which serves to validate the algorithm design
proposed in this paper. We further observe that the revenue
improvements over the naive policies is very substantial, up
to 100% in some cases. As expected, for small ρi/ρe the
policy that always admits all requests is optimal, as in this
case both elastic and inelastic slices provide the same revenue;
in contrast, for very large ρi/ρe ratios the performance of the
“always reject” policy improves, as in this case the revenue
obtained from elastic traffic is (comparatively) much smaller.

C. Revenue gains

While the result of the previous section shows that the
proposed algorithm performs close to optimal, it is only
compared against two naive policies and thus does not give
an insight on the revenue gains that could be achieved over
smarter yet not optimal policies. To this end, we compare the
performance of our algorithm against a set of “smart” random
policies defined as: inelastic network slices requests are always
accepted (k = i⇒ a = G), while the decision of rejecting an
elastic request (k = e ⇒ a = D) is set randomly. Then, by
drawing a high number of random policies, it is to be expected
that some of them provide good performance.

Fig. 6 shows the comparison against 1000 different random
policies. The results confirm that (i) none of the random
policies outperforms our approach, further confirming the opti-
mality of the approach, and (ii) substantial gains (around 20%)
are obtained over the random policies. This result confirms
that a smart heuristic is not effective in optimizing revenue,
and very substantial gains can be achieved by using a close to
optimal policy such as our adaptive algorithm.

D. Impact of estimation errors

The previous results have assumed that (i) arrivals and
departures follow Poisson process with exponential times, and
(ii) the optimal algorithm has a perfect estimation of the

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications



0.6 0.7 0.8 0.9 1.0

Relative revenue

P
D

F
Value Iteration
Q-Learning

Random

(a) ρi/ρe = 5

0.6 0.7 0.8 0.9 1.0

Relative revenue

P
D

F

Value Iteration
Q-Learning

Random

(b) ρi/ρe = 10

0.6 0.7 0.8 0.9 1.0

Relative revenue

P
D

F

Value Iteration
Q-Learning

Random

(c) ρi/ρe = 15

Fig. 6: The distribution of the revenues obtained by random smart policies compared to the proposed algorithms.

-0
.8

-0
.5 0 0.4 1 2 4 6

j

0

0.5

1

1.5

2

R
el

at
iv

e
re

ve
nu

e

Always Admit
Always Reject
Value Iteration
Q-Learning

Fig. 7: Revenue in a perturbed scenario, ρi/ρe = 5.

statistics of this process. In this section we address a more
realistic case in which neither of these assumption holds. We
hence introduce two modifications: (i) arrivals and departures
are Pareto-distributed, and (ii) we let the real arrival process
λ̂ deviate from the estimated one λ: λ̂ (j) = λ

j+1 as a
function of a parameter j > −1. That is, the optimal policy
obtained by Value Iteration under the original assumptions is
computed offline, with the estimated parameter, and applied
to the real system. Note that for negative j values, the system
receives a number of request per time unit higher than the
estimated λ, while positive j values indicate a lower requests
arrival rate.The results, depicted in Fig. 7, show that our
adaptive algorithm, which automatically learns the network
slice behaviour on the fly and hence is not affected by possible
estimation errors, substantially outperforms the optimal policy
built upon flawed assumptions and estimations.

VII. CONCLUSION

One of the key concepts behind 5G is the network slic-
ing model, which brings new players into the ecosystem:
the network infrastructure provider and the network slices’
tenants. Under this new business model, we need new resource
allocation mechanisms that take into account the relationship
between the various players. In this paper, we have addressed
this issue by designing an admission control algorithm to
be executed by the infrastructure provider when receiving
network slice requests from the tenants. Building on an
analytical model for the performance and revenue of the
system, we have provided an optimal policy benchmark and
an adaptive algorithm for practical usage. Our results show
that our adaptive algorithm approximates the performance of

the optimal policy, and provides substantial gains in revenue
over potentially smart heuristics.

ACKNOWLEDGMENTS

This research work has been performed in the framework of
the H2020-ICT-2014-2 project 5G NORMA (Grant Agreement
No. 671584). The work of A. Banchs was partially supported
by the Spanish Ministry of Economy and Competitiveness
under the THWART project (Grant TEC2015-70836-ERC).

REFERENCES

[1] 5G PPP Architecture WG, “View on 5G Architecture,” White Paper,
2016.

[2] NGMN Alliance, “Description of Network Slicing Concept,” Public
Deliverable, 2016.

[3] 3GPP, “Study on Architecture for Next Generation System,” TR 23.799,
v0.5.0, May 2016.

[4] NGMN Alliance, “5G White Paper,” White Paper, Feb. 2015.
[5] X. Zhou, R. Li, T. Chen, and H. Zhang, “Network slicing as a service:

enabling enterprises’ own software-defined cellular networks,” IEEE
Communications Magazine, vol. 54, no. 7, pp. 146–153, Jul. 2016.

[6] K. Samdanis, X. Costa-Perez, and V. Sciancalepore, “From network
sharing to multi-tenancy: The 5G network slice broker,” IEEE Com-
munications Magazine, vol. 54, no. 7, pp. 32–39, Jul. 2016.

[7] A. Gudipati, L. Li, and S. Katti, “RadioVisor: A Slicing Plane for Radio
Access Networks,” in Proc. of ACM HotSDN, Aug. 2014.

[8] I. Malanchini, S. Valentin, and O. Aydin, “Generalized resource sharing
for multiple operators in cellular wireless networks,” in Proc. of IEEE
IWCMC, Aug. 2014.

[9] R. Mahindra, M. A. Khojastepour, H. Zhang, and S. Rangarajan, “Radio
Access Network sharing in cellular networks,” in Proc. of IEEE ICNP,
Oct. 2013.

[10] S. Rathinakumar and M. Marina, “GAVEL: Strategy-proof Ascending
Bid Auction for Dynamic Licensed Shared Access,” in Proc. of ACM
MobiHoc, Jul. 2016.

[11] ITU-R, “Guidelines for evaluation of radio interface technologies for
IMT-Advanced,” Report ITU-R M.2135-1, Dec. 2009.

[12] T. O. Kim, C. N. Devanarayana, A. S. Alfa, and B. D. Choi, “An Optimal
Admission Control Protocol for Heterogeneous Multicast Streaming
Services,” IEEE Transactions on Communications, vol. 63, no. 6, pp.
2346–2359, Jun. 2015.

[13] J. Buhler and G. Wunder, “Traffic-aware optimization of heterogeneous
access management,” IEEE Transactions on Communications, vol. 58,
no. 6, pp. 1737–1747, Jun. 2010.

[14] R. Bellman, “A markovian decision process,” DTIC, Tech. Rep., 1957.
[15] R. Howard, Dynamic Programming and Markov Processes. Technology

Press-Wiley, 1960.
[16] S. Lippman, “Applying a New Device in the Optimization of Exponential

Queuing Systems,” Operation Research, vol. 23, no. 4, pp. 687–710,
Aug. 1975.

[17] H. Tijms, A First Course in Stochastic Models. J. Wiley & Sons, 2003.
[18] C. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.

3-4, pp. 279–292, 1992.
[19] E. Even-Dar and Y. Mansour, “Learning rates for Q-learning,” Journal

of Machine Learning Research, vol. 5, pp. 1–25, Dec. 2003.

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications


