
0018-9162/02/$17.00 © 2002 IEEE May 2002 55

E-Business Process
Modeling: The
Next Big Step

business so far. Businesses realize that the cost of
automating transactions with trading partners is very
high. Standards and technologies for modeling e-busi-
ness processes that use Web services could drive the
costs down by achieving automated code generation,
reuse, and interoperability—facilitating communica-
tion between business analysts and implementers.

Our proposed Process Coordination Framework
outlines the building blocks required for Web ser-
vices-enabled e-business automation. PCF helps in
understanding the roles of the various proposed
standards with respect to these building blocks and
in identifying both overlaps and gaps.

PROCESS COORDINATION FRAMEWORK
As Figure 1 shows, PCF groups the features that

e-business automation requires into a multilayered
stack.

• Service description and transport binding.
Service description provides metalevel data for
services and their operations; transport bind-
ings tie abstract service descriptions to specific
physical addresses such as HTTP or SMTP sta-
tically at design time or dynamically at run-
time.

• End point description. This layer describes
aspects such as quality of service (QoS), service
location, provider information, and service cost
that can influence a customer’s decision to use
the Web service.

• Public collaborative process. This process
describes the sequence or choreography of the

The authors propose a Process Coordination Framework for Web services
and outline the building blocks required for e-business automation. Their
framework helps in understanding the roles of various standards and in
identifying overlaps, gaps, and opportunities for convergence.

Selim Aissi
Pallavi Malu
Krishnamurthy
Srinivasan
Intel Labs

T he Internet is emerging as the platform for
automating both the provider and con-
sumer ends of e-business transactions. In
this new model, businesses offer Web ser-
vices that applications running in other

businesses could invoke automatically, building
bridges between systems that otherwise would
require extensive integration and development
efforts. Web services are software components that
use standard Internet technologies to interact with
one another dynamically.

In spite of the significant potential benefits, only a
few large businesses have implemented automated e-

C O V E R F E A T U R E

ebXML
CPPWSDL

ebXML
BPSS

WSCL

WSEL

Service
description and

transport binding

End point
description

Public
collaborative

process

Private
process

Contracts/
agreement

Se
cu

rit
y

BPML

ebXML
CPA

WSFL

XLANG

Figure 1. Process Coordination Framework. PCF groups features required for e-
business automation along with relevant specifications into a multilayered stack.

56 Computer

operations the Web service supports. For
example, if the service supports operations
including Login and Check Balance, the pub-
lic collaborative process specifies that the user
needs to log in before checking the balance to
avoid errors.

• Private process. This layer describes internal
executable business processes that support the
Web service’s public collaborative process.

• Contracts/agreement. The actual technical and
legal agreements under which entities conduct
business reside in this layer. The technical con-
tract between the entities includes the exact
details of how the parties use their informa-
tion technology (IT) infrastructure to transact
the business at hand. The legal contract
includes agreements on the terms and condi-
tions of the business exchange. Having an
XML-based syntax to specify contracts helps
applications automatically interact without
human intervention. However, XML does not
currently incorporate many of these defini-
tions.

• Security. Security requirements include a com-
bination of the following features: authoriza-
tion, authentication, confidentiality, non-
repudiation, and auditing. Various PCF layers
may require different aspects of security. Any
exchange of business information may require
all, some, or no security features.

SPECIFICATIONS IN THE PCF SPACE
A simple example of a composite Web service

provided in IBM’s Web Services Flow Language
(http://www-4.ibm.com/software/solutions/web
services/pdf/WSFL.pdf) helps to understand the
specifications and the features they support. In this
example, TotalSupply service leverages two other
Web services: mySupplier as a source for products
and myShipper to distribute them. These two Web
services use the Web Services Description Language.

Web Services Description Language
WSDL is an XML-based specification that

describes Web services as collections of message-
enabled operations and was submitted to the World

<message name="purchaseOrder"> <part name="body" type="xsd1:orderBody"/> </message>
<message name="shipmentNotification"> --------- </message>
<message name="payment"> --------- </message>
<message name="error"> --------- </message>
(a)

<portType name="TotalSupplyPortType">
<operation name="processPO">

<input message="tns:purchaseOrder"/>
<output message="tns:shipmentNotification"/>
<fault message="tns:error"/>

</operation>
<operation name="processPayment"> --------- </operation>

</portType>
(b)

<binding name="TotalSupplySoapBinding" type="tns:TotalSupplyPortType">
<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http/">
<operation name="processPO">

<soap:operation soapAction="http://example.com/processPO"/>
<input> <soap:body use="literal"/> </input>
<output> --------- </output>
<fault> <soap:fault use="literal"/> </fault>

</operation>
</binding>
(c)

<service name="TotalSupplyService">
<documentation> TotalSupply service</documentation>
<port name="TotalSupplyPort" binding="tns: TotalSupplySoapBinding">

<soap:address location="http://example.com/TotalSupply"/>
</port>

</service>
(d)

Figure 2. WSDL defi-
nition of TotalSup-
ply: (a) schema file
TotalSupply.xsd
defining a class of
XML documents; (b)
portType element
grouping the opera-
tion and related
messages together;
(c) binding element
defining the network
protocol details for
the operation; (d)
service element
grouping related
ports together.

May 2002 57

Wide Web consortium (W3C) by Ariba, IBM, and
Microsoft (http://www.w3.org/TR/wsdl). WSDL
provides the information needed to invoke an oper-
ation in an application running in a third-party loca-
tion on the Internet, including the operation name,
input/output parameters and their data types, the
network protocol, and the network address.

Dissecting the definition of TotalSupply helps to
understand the details of WSDL. The service sup-
ports two operations: processPO and process-
Payment. This example assumes that the service is
deployed using the SOAP protocol (http://www.
w3.org/TR/SOAP/) over HTTP. The WSDL file
begins with an element having attributes that define
the TotalSupply service, the target namespace
(http://example.com/TotalSupply.wsdl), and other
namespaces. The types element defines the data
type of the input/output messages that are
exchanged during the operation. You can use stan-
dard XML data types such as string, integer, and
float, or you can create complex data types.

TotalSupply supports four data types: orderBody,
notificationBody, paymentBody, and errorBody. It
also supports four types of single-part messages:
two input messages, purchaseOrder and payment;
one output message, shipmentNotification; and an
error message. To keep the example simple, we
define a class of XML documents within a separate
schema file, TotalSupply.xsd, as Figure 2a shows.
The references to the user-defined types use xsd1
as a namespace prefix to qualify their use. The mes-
sage element defines the exchanged data. Messages
can consist of one or more logical parts, each with
an associated data type.

The portType element in Figure 2b groups the
operation and related messages together. This ele-
ment currently supports four types of operation:

one-way, request-response, solicit response, and
notification. TotalSupply Web service supports two
request-response operations: processPO and
processPayment. The binding element in Figure 2c
defines the network protocol details for the opera-
tion, SOAP over an HTTP transport in this exam-
ple. Where the port element defines a single network
address (http://example.com/TotalSupply), the ser-
vice element in Figure 2d groups related ports
together in our example Web service.

Web Services Conversation Language
Hewlett-Packard developed the Web Services

Conversation Language (WSCL), an XML-based
specification layered on top of WSDL, for use in
defining conversations between service providers
and consumers. WSCL was submitted to the W3C
(http://www.w3.org/TR/wscl10/).

Figure 3 shows a WSCL conversation for our
TotalSupply Web service. The initialInteraction
attribute specifies the first interaction—equivalent to
operation in WSDL—in the sequence. The Transition
attribute defines the ordering between the processPO
and processPayment interactions. The conversation
proceeds from one interaction to another according
to the legally defined transitions. Transition is unique
to WSCL, whereas Interaction and Inbound/
Outbound XML documents overlap with WSDL.

ebXML
The United Nations (UN/CEFACT) and OASIS

sponsored the ebXML specifications for use in
e-business frameworks.

ebXML Business Process Specification Schema.
ebXML BPSS (http://www.ebxml.org/specs/ebBPSS.
doc) is a proposed standard for specifying collab-
orations for use in exchanging business documents

<ConversationInteractions>
<Interaction StepType="ReceiveSend" id="ProcessPO">

<InboundXMLDocuments>
<InboundXMLDocument id="PurchaseOrder"

hrefSchema="PO.xsd"/>
</InboundXMLDocuments>

<OutboundXMLDocuments>
<OutboundXMLDocument id="Shipment"

hrefSchema="Shipment.xsd"/>
</OutboundXMLDocuments>

</Interaction>
<Interaction StepType="Receive" id="ProcessPayment"> --------- </Interaction>
</ConversationInteractions>

<ConversationTransitions>
<Transition>
<SourceInteration href="#ProcessPO"/>
<DestinationInteraction href="#ProcessPayment"/>

<TriggeringDocument href="#Shipment"/>
</Transition>
</ConversationTransitions>

Figure 3. Web Ser-
vices Conversation
Language defining
conversations
between service
providers and con-
sumers. The Transi-
tion attribute
defines the ordering
between the
processPO and
processPayment
interactions.

58 Computer

through a set of choreographed transactions. Our
TotalSupplySpec example uses three business doc-
uments: purchase order, shipment notification, and
payment.

A business transaction is an atomic unit of work
between trading partners. Each business transac-
tion has one requesting (incoming) document and
an optional responding (outgoing) document. BPSS
also supports business signals, or application-level
documents that signal a business transaction’s cur-
rent state—for example, an acknowledgment doc-
ument.

As Figure 4 shows, TotalSupplySpec supports
two business transactions: processPO and process-
Payment. TotalSupply workflow supports the
notion of business collaboration, or Binary-
Collaboration, which establishes roles and autho-
rizes actors to participate in the collaboration. For
example, a Buyer role can initiate the business
transaction and the Seller has a responding role. A
BinaryCollaboration also specifies the choreogra-
phy—or ordering of business transactions—and
subcollaborations within larger collaborations.
WSCL overlaps with BPSS and WSFL because
Transition is the same as choreography.

BPSS uses a top-down approach that provides a
notation to describe a business process from both
the service provider and service consumer view-
points, whereas WSDL and WSCL use a bottom-up
approach that provides a notation describing only
the service provider interface.

ebXML Collaboration Protocol Profile. ebXML CPP
(http://www.ebxml.org/specs/ebCCP.doc) describes
the IT capabilities of an individual party partici-
pating in the collaborative business process. These
capabilities include details of transport, messaging,
security constraints, and bindings to a business
process—for example, ebXML BPSS.

A CollaborationProtocolProfile, the root element
of a CPP document, includes a PartyInfo element

that identifies the party described in the CPP and
includes a reference to the ProcessSpecification
(BPSS) documents it supports. The Collaboration-
Role element identifies the roles that the party can
play in the referenced business process. Service-
Binding binds all of the BusinessTransactions
defined in BPSS to the sending or receiving com-
munication protocol—for example, HTTP or
SMTP—and also provides the end point associated
with the receiving protocol.

In the current CPP specification, the end point
attribute is static, but the ebXML Messaging Service
specification may provide the capability to dynam-
ically override that end point information by
exchanging a specific URI in a business document.

The Collaboration Protocol Agreement (CPA)
describes the capabilities that two parties have
agreed to use to perform a business collaboration.
A CPA can be generated by calculating the inter-
section of the information found in the CPPs of the
two parties participating in the collaboration.
Generating the CPA may involve some level of
negotiation between the two parties.

CPA is part of the CPP specifications. Although
there is no specification for how to accomplish the
negotiation, the CPPA technical committee has ini-
tiated some work in this area.

Web Services Flow Language
IBM’s Web Services Flow Language is an XML-

based specification for describing a public collab-
orative process and its compositions. WSFL is
layered on top of WSDL, which describes the ser-
vice interfaces and their protocol bindings.

WSFL defines two types of Web services composi-
tions: A flow model specifies the execution sequence
of a business process’s functions. A global model com-
bines flow models and provides a description of how
the composed Web services interact with each other.

WSFL’s major features include

<!--Business Transactions-->
<BusinessTransaction name="Process PO">
<RequestingBusinessActivity name="PurchaseActivity">

<DocumentEnvelope businessDocument="Purchase Order"
isAuthenticated="true"/>

</RequestingBusinessActivity>
<RespondingBusinessActivity name="NotificationActivity">

<DocumentEnvelope businessDocument="Shipment Notification"
isTamperProof="true"/>

</RespondingBusinessActivity>
</BusinessTransaction>
<BusinessTransaction name="Process Payment">
<RequestingBusinessActivity name="PaymentActivity">

<DocumentEnvelope businessDocument="Payment"
isAuthenticated="true"/>

</RequestingBusinessActivity>
</BusinessTransaction>

Figure 4. ebXML
Business Process
Specification
Schema specifying
business collabora-
tions. In business
collaborations, a set
of roles exchange
business documents
in a set of
choreographed
transactions.

May 2002 59

• activity, a processing step in a business process;
• control link, sequencing rules in a business

process that model the control flow from one
activity to the next;

• data link, information flow in a business
process, wherein data flow can be separate
from control flow;

• data mapping, specifying information that
needs to be transferred between two linked
activities; and

• pluglink and export element, describing the
relation between activities in the flow model
and the WSDL operations the service provider
offers.

Figure 5 shows a graphical representation of the
TotalSupply Web service WSFL model, with three
flow models comprising the global model: one for
our enterprise and two representing the support-
ing services.

Prior to constructing a WSFL global model, the
individual flow models must be specified accord-
ing to IBM’s WSFL specification (http://www-
4.ibm.com/software/solutions/webservices/pdf/
WSFL.pdf). The WSFL flow model for TotalSupply
consists of a flowModel name, TotalSupplyFlow;
a service ProviderType; and a listing of service

providers, activity specifications, and control and
data links. Our TotalSupply flow model includes
two separate serviceProvider elements in the ser-
vice ProviderType—mySupplier and myShipper.
Figure 6a shows the XML code for mySupplier.

The TotalSupply flow model must perform three
activities to successfully complete the business
process: processing a purchase order, accepting a
shipment request, and receiving a payment. Separate
activity elements specify each of these activities,
which must perform in a specific order: Purchase-
order processing must precede the shipper’s accep-
tance of the shipping request, whereas the payment
can be received at any time—WSFL allows an activ-
ity to exist outside the control links connecting other
activities. Figure 6b provides an example of the
processPO activity, which is provided by my-

TotalSupplyFlow

Accept
shipment
request

Process
payment

processPO
Supplier

FlowModel

Shipper
FlowModel

FlowModel
GlobalModel

Figure 5. TotalSup-
ply Web service
global model repre-
sentation. Activities
such as processPO
are represented as
shaded circles, con-
trol links are solid
arrows connecting
activities, data links
are dashed arrows,
and the callouts
connecting the
TotalSupply activi-
ties to the external
services represent
pluglinks.

Figure 6. WSFL
TotalSupply flow
model: (a) service-
Provider element
for mySupplier; (b)
processPO activity
provided by mySup-
plier; (c) controlLink
and dataLink
elements.

<serviceProvider name="mySupplier" type="supplier">
<locator type="static" service="qualitySupply.com"/>

</serviceProvider>
(a)

<activity name="processPO">
<performedBy serviceProvider="mySupplier"/>
<implement>

<export>
<target portType="totalSupplyPT"

operation="sendProcOrder"/>
</export>

</implement>
</activity>

(b)

<controlLink source="processPO"
target="acceptShipmentRequest"/>

<dataLink source="processPO"
target="acceptShipmentRequest">

<map sourceMessage="anINVandSR" targetMessage="anSR"/>
</dataLink>

(c)

60 Computer

Supplier, and exposes the sendProcOrder operation;
the TotalSupply flow includes this activity defini-
tion as well as definitions for acceptShipment-
Request and processPayment.

Figure 6c provides an example of the controlLink
and dataLink elements. The map element nested
inside the dataLink specifies the information the
two linked activities need to transfer.

All of this is brought together in Figure 7 in
which the simplified mySupplyChain global model
captures the interactions between the supplier, the
shipper, and the TotalSupply Web service. The rela-
tionship between a flow model public interface
operation and a service provider operation is estab-
lished through a plugLink element, which WSFL
typically specifies within a global model.

XLANG
Microsoft’s XLANG (http://www.gotdotnet.

com/team/xml_wsspecs/xlang-c/default.htm), an
XML-based specification for describing executable
business processes internal to a business, is layered
on top of WSDL.

The XLANG specification builds on the XML
code for process description that Microsoft’s Visio-
based BizTalk Server Orchestration graphical mod-
eling tool generates.

XLANG’s major features include

• behavior, a container for the description of the
service’s behavioral aspects, including support
for looping, concurrency, and exception han-
dling;

• action, atoms of behavior referencing WSDL
operations on the available ports;

• control flow, sequence in which the service
performs actions;

• correlation, structure the service uses to route
messages to correct workflow instances;

• context, a context for long-running transac-
tions;

• service management, features of service
instance management; and

• port mapping, method for plugging in the ser-
vice user and the service provider.

Figure 8a shows an XLANG definition for our
WSFL-based TotalSupply example. The </all> tag
indicates that acceptShipmentRequest and process-
Payment actions can occur concurrently. WSDL
defines the sendSRPort and sendPaymentPort ref-
erence ports. Figure 8b captures the relationship
between the supplier, the shipper, and the Total-
Supply Web service. A connect element establishes

Figure 7. Simplified
global model my-
SupplyChain cap-
tures the inter-
actions between
the supplier, the
shipper, and the
TotalSupply Web
service.

<globalModel name="mySupplyChain"
serviceProviderType="supplyChain">

<serviceProvider name="mySupplier" type="supplier"/>
<serviceProvider name="myShipper" type="shipper"/>
<serviceProvider name="myTotalSupply" type="totalSupply"/>
<plugLink>

<source serviceProvider="myTotalSupply"
portType="totalSupplyPT"
operation="sendProcOrder"/>

<target serviceProvider="mySupplier"
portType="suppSvr"
operation="procPO"/>

</plugLink>
<plugLink>

<source serviceProvider="myTotalSupply"
portType="totalSupplyPT"
operation="sendPayment"/>

<target serviceProvider="mySupplier"
portType="suppSvr"
operation="recPay"/>

</plugLink>
<plugLink>

<source serviceProvider="myTotalSupply"
portType="totalSupplyPT"
operation="sendSR"/>

<target serviceProvider="myShipper"
portType="shipSvr"
operation="recSR"/>

</plugLink>
</globalModel>

May 2002 61

the relationship between a TotalSupply operation
and an operation that a Supplier and a Shipper pro-
vide.

Business Process Modeling Language
The Business Process Management Initiative

developed the XML-based BPML metalanguage
for modeling executable private business processes
(http://www.bpmi.org/bpml.esp). BPML is com-
plementary to public collaborative process descrip-
tion languages, such as BPSS. It is based on the
concept of transactional finite-state machines and
has features that overlap XLANG.

CHALLENGES
The abstract public description of our TotalSupply

Web service example needs to include a definition of
some additional attributes, including constraints the
B2B environment’s competitive nature imposes,
which requires differentiations based on QoS.

End point description specification. We need to stan-
dardize and implement these attributes to allow an
optional layering of the definitions in WSDL. This
would allow an implementer to add the complex-
ity of this layer only when the need arises.
Currently, there is no standard form for these def-
initions. Although IBM’s WSFL documentation

Figure 8. (a) XLANG
definition for Total-
Supply; (b) relation-
ship between the
supplier, the
shipper, and the
TotalSupply Web
service, established
through a connect
element.

<xlang:behavior>
<xlang:body>

<xlang:sequence>
<xlang:action operation="processPO"

port="sendProcOrderPort" activation="true"/>
<all>

<xlang:action operation="acceptShipmentRequest"
port="sendSRPort"/>

<xlang:action operation="processPayment"
port="sendPaymentPort"/>

</all>
</xlang:action>

</xlang:sequence>
</xlang:body>

</xlang:behavior>
(a)

<!--use the WSDL import for convenience-->
<import namespace="http://example.com/totalSupply/definitionsSupplier"
location="http://example.com/totalSupply/definitionsSupplier.wsdl"/>
<import namespace="http://example.com/totalSupply/definitionsShipper"
location="http://example.com/totalSupply/definitionsShipper.wsdl"/>
<import namespace="http://example.com/totalSupply/definitionsTotalSupply"
location="http://example.com/totalSupply/definitionsTotalSupply.wsdl"/>
<!--define the way in which the services plugged in together-->
<xlang:contract>
<xlang:services refs="totalSupply:totalSupplyService
supplier:SupplierService
shipper:ShipperService"/>
<xlang:portMap>
<!--the total supply connects to the supplier for PO and Payment-->
<xlang:connect
port="totalSupply:totalSupplyService/sendProcOrderPort"
port="supplier:SupplierService/suppSvr/procPOPort"/>
<xlang:connect
port="totalSupply:totalSupplyService/sendPaymentPort"
port="supplier:SupplierService/suppSvr/recPayPort"/>
<!--the total supply connects to the shipper for the shipment request -->
<xlang:connect
port="totalSupply:totalSupplyService/sendSRPort"
port="shipper:ShipperService/shipSvr/recSRPort"/>
</xlang:portMap>
</xlang:contract>
(b)

62 Computer

hints at work in this area, for example, WSEL, no
standards body has pursued these efforts.

Security considerations. The biggest challenge for
Web services is the fragmentation of the security
requirements. The inability to describe where and
how to apply security measures is a large gap in the
description of Web services. The only initiative that
indicates how to use XML’s security features in a
CPPA context is ebXML. The main security chal-
lenges include the lack of specificity for how to
apply security standards (for example, digital cer-
tificates); the cost or difficulty in implementing
some security solutions (for example, a digital sig-
nature for authentication); and the lack of key secu-
rity countermeasures in the specification (for
example, security policy maintenance).

Another challenge is that ebXML CPPA’s secu-
rity features are intermingled with other trading
partner specific details like business process defin-
itions and implementation protocol bindings. This
approach works well when every layer of the
ebXML protocol stack is used. However, with
ebXML, the implementer cannot use widely sup-
ported standards from other organizations.

Opportunities for convergence. Having multiple
specifications that overlap and describe similar fea-
tures can cause interoperability problems. Instead
of describing its own transport bindings, CPPA
could use WSDL’s transport bindings.

Both XLANG and BPML focus on an XML-
based description of private business processes.
Because they both are built on WSDL and have rel-
ative gaps and strengths, convergence would capi-
talize on their strengths. WSCL describes the
sequence in which operations can be invoked.

WSFL specifies public choreography and com-
bining multiple Web services into a composite Web
service. BPSS describes public choreography and
multiparty collaboration. WSCL, WSFL, and BPSS
all describe the public choreography of a business
process, and they should converge on that feature.

B ased on its B2B focus, security and end point
descriptions, and complete business-scenario
approach, ebXML (BPSS, CPPA) tends to be

the richest of all the specifications discussed.
However, to reach full automation, in addition to
security descriptions, Web services need a richer
and more complete end point. Web services also
need faster, less expensive, and more modular busi-
ness process modeling and code generation tools,
such as graphical tools.

In a perfect world, the analyst draws the model,
the tools generate the WSDL and WSCL or BPSS,
and the implementer uses the graphical model to
derive the workflow implementation and auto-
matically generate the CPP, which the trading part-
ners then use to do business. While XML allows
interoperability, the proposed automation process
will facilitate reuse of the workflows.

Web services are advancing platform and lan-
guage-independent interoperability. However, their
standardized definitions are still evolving.
Describing the Web services business process is a
key area in the future of software engineering. In
addition to discovery and management, a Web ser-
vices description will lead to solutions that are more
flexible, faster to implement, and cheaper to deploy
and maintain. �

Selim Aissi is a senior architect in Intel’s Corpo-
rate Technology Group in Hillsboro, Oregon. His
research interests include the development of secu-
rity reliability, and trustworthiness technologies
for distributed systems and Web services. He
received a PhD in aerospace engineering from the
University of Michigan. Contact him at selim.
aissi@intel.com.

Pallavi Malu is a senior software engineer in Intel’s
Corporate Technology Group in Chandler, Ari-
zona. She received an MS in computer science from
Wright State University. Contact her at pallavi.
g.malu@intel.com.

Krishnamurthy Srinivasan is a manager in the Web
Services Technologies Lab at Intel’s Corporate
Technology Group. He received a PhD in textile
engineering from the Georgia Institute of Tech-
nology. Contact him at krishnamurthy.srinivasan@
intel.com.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

