SIMULACIÓN EN REDES DE COMUNICACIONES

¿Qué es una simulación?

- - Definir un modelo matemático del sistema
 - Representar numéricamente la evolución del modelo durante un cierto periodo de tiempo (mediante un programa de ordenador)
 - Medir el comportamiento del modelo y estimar las características de interés del sistema a partir de los datos recogidos

¿Para qué simular?

- Depende de lo que simulemos, pero típicamente para:
 - Estudiar un sistema con una configuración dada
 - Comparar varias configuraciones alternativas
 - Determinar la configuración de prestaciones óptimas

¿Qué otras técnicas hay?

- Experimentación sobre el sistema real
- Experimentación con modelos físicos (prototipos)
- Solución analítica de modelos matemáticos

¿Qué ventajas e inconvenientes tiene simular?

- Ventajas:
 - Permite abordar modelos más complejos que los métodos analíticos
 - Suple la experimentación con el sistema real cuando ésta es imposible o muy costosa
- Inconvenientes (limitaciones):
 - Produce estimaciones, no soluciones "exactas"
 - Normalmente requiere programas muy complejos y mucho tiempo de CPU
 - Para entender porqué ocurren las cosas, es mejor el análisis

Importante...

- +La simulación debe complementarse con el análisis (y viceversa):
 - Análisis de casos simples para validad simulador
 - Simulación para validar análisis aproximados
- Simulación como "último recurso"

Fases de la simulación

- 1. Estudio del problema
- 2. Recogida de datos sobre sistemas reales
- 3. Formulación de un modelo
- 4. Validación del modelo
- 5. Realización del modelo
- 6. Verificación del programa resultante
- 7. Diseño de los experimentos (plan de simulación)
- 8. Ejecución
- 9. Análisis de reultados

Tipos de simulación

- Según la evolución temporal del modelo:
 - Continua
 - Conjunto de ecuaciones que se resuelven numéricamente variando el tiempo de forma (casi) continua (a intervalos fijos, pequeños, de tiempo)
 - Discreta (de eventos discretos)
 - *Conjunto de relaciones lógicas que indican los posibles cambios de estado del sistema. Hay un número finito de cambios posibles y tienen lugar sólo en ciertos instantes de tiempo, no de forma continua.

Modelo de simulación con eventos discretos

+Contiene:

- El estado del sistema
 - **+Elementos que lo componen**
 - +Atributos de cada elemento
 - Relación entre elementos
- Eventos (sucesos) que pueden alterar el estado del sistema a lo largo del tiempo

Tipos de simulación de eventos discretos

- Orientada a eventos
 - Enfoque de bajo nivel
 - Un único elemento básico: el evento
 - Conjunto mínimo de primitivas
- Orientada a procesos
 - Mayor nivel de abstracción
 - Elementos básicos: procesos y recursos
 - Conjunto de primitivas más rico

Simulación orientada a eventos (I)

- Cada evento que pueda cambiar el estado del sistema se considera por separado
- A cada evento se le asocia un procedimiento de tratamiento, que agrupa todas las acciones a que dé lugar (incluyendo la programación de otros sucesos en el futuro)
- El programa principal mantiene una lista de eventos pendientes en orden cronológico y va llamando a los procedimientos de tratamiento cuando corresponda

Simulación orientada a eventos (II)

- Conceptos a distinguir:
 - Tipos de eventos
 - Información asociada a cada evento concreto
 - Procedimiento de tratamiento de cada evento
- Primitivas para manejar eventos:
 - → SIMTIME
 - * SCHEDULE evento, tipo, info, tiempo
 - CANCEL evento

Simulación orientada a eventos (III) Ejemplo cola

- Tipos de eventos:
 - → Ilegada, salida
- Información asociada:
 - Cada llegada pide un cierto tiempo de servicio
- Procedimientos de tratamiento:
 - Llegada: si el servidor está libre, ocuparlo durante el tiempo de servicio asociado a la llegada. Si no, ponerla en la cola de entrada
 - → Salida:...

Simulación orientada a eventos (IV) Ejemplo cola

```
INICIAR
  cola vacía
  servidor libre
  cliente.Ts <- Tservicio()
  SCHEDULE e, llegada, cliente, Tllegada()

TRATAMIENTO DE LLEGADAS (cliente_i)
  IF servidor libre THEN
    servidor ocupado
    SCHEDULE e, salida, -, SIMTIME + cliente_i.Ts
  ELSE
    meter cliente_i en la cola
  END
  ciente.Ts <- Tservicio ()
  SCHEDULE e, llegada, cliente, SIMTIME + Tllegada ()</pre>
```


Simulación orientada a eventos (V) Ejemplo cola

```
TRATAMIENTO DE SALIDAS

IF cola vacía THEN

servidor libre

ELSE

sacar cliente de la cola

SCHEDULE e, salida, -, SIMTIME + cliente.Ts

END
```


Simulación orientada a procesos (I)

- Los eventos no se tratan individualmente sino que se consideran dentro del flujo de los procesos del sistema.
- Un proceso puede estar ACTIVO, EJECUTANDO, PASIVO, ESPERANDO o TERMINADO
- El programa principal coordina el avance de los diferentes procesos que intervienen en el sistema

Simulación orientada a procesos (II)

- Conceptos a distinguir:
 - Tipos de procesos
 - Parámetros y datos de cada ejemplar de proceso
 - Procedimiento de tratamiento de cada proceso
- Primitivas para manejar eventos:
 - → SIMTIME
 - NEWPROCESS proceso, tipo, parámetros
 - ACTIVATE proceso, retardo
 - PASSIVATE proceso
 - KILL proceso
 - ⋆ TERMINATE
 - → HOLD retardo

Simulación orientada a procesos (III)

- Avance de la simulación:
 - En cada instante (simulado) se consideran todos los procesos activos
 - Se ejecuta uno de ellos hasta que pasa a pasivo (PASIVATE o HOLD)
 - Se van ejecutando sucesivamente
 - Cuando no quedan más procesos activos, se avanza el tiempo simulado hasta el próximo instante en que un proceso tenga algo que hacer

Simulación orientada a procesos (IV) Ejemplo cola

- +Tipos de eventos:
 - → Fuente, servidor
- **Parámetros:**
 - Capacidad de servicio de cada servidor
- **+**Acciones:
 - Servidor: Ver si mi cola está vacía. Si no, sacar el primer cliente y...
 - → Fuente:...

Simulación orientada a eventos (V) Ejemplo cola

```
INICIAR

cola vacía

NEWPROCESS p, servidor

NEWPROCESS q, fuente

ACTIVATE p, 0.0

ACTIVATE q, 0.0

FUENTE

LOOP

HOLD Tllegada ()

cliente.Ts <- Tservicio ()

meter cliente en la cola

IF STATUS (p) = Passive THEN

ACTIVATE p, 0.0

END

END
```


Simulación orientada a eventos (VI) Ejemplo cola

```
SERVIDOR
LOOP
IF cola vacía THEN
PASSIVATE CURRENT
ELSE
sacar cliente de la cola
HOLD cliente.Ts
END
END
```


Resumen

- Simulación orientada a eventos es de más bajo nivel
- La simulación orientada a procesos ofrece abstracciones de más alto nivel para representar los elementos reales del sistema a modelar
- Todas las interacciones entre procesos podrían reducirse a un modelo equivalente basado sólo en sucesos

Diseño de experimentos

- Primero debemos:
 - Identificar parámetros relevantes
 - Identificar variables a medir
- + Luego:
 - Generar entrada
 - Trazas vs generadores (pseudo) aleatorios
 - Medir salida (análisis de resultados)
 - # Eliminar transitorio
 - Técnicas estadísticas para medir precisión (nivel e intervalo de confianza)

Temas de investigación

- Algunos ámbitos de investigación en el terreno de la simulación
 - Modelado de tráfico
 - Optimización de simulaciones
 - +Simulaciones paralelas / distribuidas
 - Muestreo de importancia

Realización de simuladores: alternativas

- Paquetes de simulación: CONMET, OPNET
- Lenguajes de propósito general + bibliotecas: Sim++, PARSEC
- Lenguajes específicos de simulación: GPSS, SIMULA, SIMSCRIP, MODSIM
- A partir de técnicas de descripción formal
- Simulación de nivel físico (continuas): TOPSIM, MathCad

¿Qué me dan los lenguajes específicos / las bibliotecas de simulación?

- +Control de la simulación
 - del paso del tiempo simulado (qué evento / proceso es el siguiente)
- Generación de números aleatorios
- Cálculo de estadísticos

Network simulartor (ns-2)

- http://www.isi.edu/nsnam/ns/
- Es un simulador de eventos discretos orientado a facilitar la investigación en redes
- Implementa todos los protocolos estándar desde nivel físico hasta aplicación (TCP, routing, multicast, LAN, WLAN, satélite...)
- Estos bloques básicos (y otros que nos definamos) implementados en C++
- + La simulación se hace en TCL
- # El resultado se pude ver con nam

Referencias

Law, Averill M. and Law, W. David Kelton: Simulation modeling and analysis, 3rd ed. New York. McGraw-Hill , cop. 2000

