
Ztreamy: Implementation Details

Jesús Arias Fisteus Norberto Fernández Garćıa

Luis Sánchez Fernández Damaris Fuentes Lorenzo

October 2013

Technical Report

Depto. de Ingenieŕıa Telemática
Universidad Carlos III de Madrid

Avda. de la Universidad, 30
28911 Leganés, Madrid (Spain)

Abstract

Ztreamy is a scalable middleware framework for publishing seman-

tic streams on the Web. This technical report complements the article

Ztreamy: A middleware for publishing semantic streams on the Web, with

design and implementation details about Ztreamy that could not be in-

cluded there. More specifically, this document describes how Ztreamy

represents the data of a stream, how event consumers and producers in-

teract with a Ztreamy server and how the server itself is implemented.

Contents

1 Introduction 3

2 Data presentation format 3

3 Client-server interaction 4

3.1 Consuming streams . 4
3.2 Sending events from producers to stream servers for publication . 7
3.3 Control messages . 7

4 Implementation of the server 8

4.1 Single-threaded non-blocking input/output 8
4.2 Buffering data at the server . 9
4.3 Compression . 10
4.4 Serving past data . 11
4.5 Handling of client requests and subscriptions 11

5 Conclusions 11

2

1 Introduction

Ztreamy1 is a scalable middleware framework for publishing semantic streams
on the Web. The system is described in [1], including its motivation and re-
quirements behind it, the most important design decissions and a performance
evaluation in which it is compared to other existing systems. This technical
report complements the information about Ztreamy in that publication by pre-
senting the most relevant implementation details that could not be included
there due to the limited available space.

A Ztreamy server is able to serve one or more streams from a single server.
Streams are transmitted on top of HTTP and consist of a sequence of items
represented as explained in section 2. Each stream has associated URIs that
consumers can use to subscribe to them. Apart from identifying a given stream,
a URI can specify other aspects such as whether compression is preferred and
the access mechanism. As it is explained in section 3, consumers can use two al-
ternative mechanism to access a stream: long-lived subscriptions or long polling.
The mechanism is selected by means of the URI.

Apart from describing how clients and servers interact in the Ztreamy plat-
form, this document presents the most important implementation aspects in
section 4. Ztreamy is implemented on top of the Tornado Web server, based on
a single-threaded non-blocking input-output model. Because of that, Ztreamy
follows internally an event-driven architecture. Section 4 explains also how the
server buffers the data in a stream and compresses it in order to improve per-
formance.

2 Data presentation format

Ztreamy represents the data in a stream as a sequence of items. Their format
is similar to the format of HTTP messages: items are represented with headers
and body. We have chosen this HTTP-inspired data format instead of others
because it is easy to produce and parse.

Headers contain some metadata about the item, whereas the body contains
its main data. Mandatory headers include a unique item identifier, a creation
timestamp, the identifier of the source of the item and the data type and length
of its body. Optional headers include application identifier and identifiers of the
intermediate nodes the item was transmitted through. Applications may also
use custom extension headers.

The body of the item should normally be a serialization of RDF, such as
Turtle. Figure 1 shows an example. Ztreamy provides code for the creation,
serialization and parsing of RDF data. Non-RDF data, including binary data,
can also be transported, e.g. in the first stages of its acquisition, but in order to
exploit the benefits of semantic technologies it should be semantically annotated
somewhere in its processing pipeline.

1http://www.it.uc3m.es/jaf/ztreamy/

3

http://www.it.uc3m.es/jaf/ztreamy/

Event-Id: 1100254f-f4ba-49aa-8c47-605e3110169e
Source-Id: 83a4c888-c395-4bb7-a635-c5b864d6bd06
Syntax: text/turtle
Application-Id: identi.ca dataset
Timestamp: 2012-10-25T13:31:24+02:00
Body-Length: 843

@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> .
@prefix webtlab: <http://webtlab.it.uc3m.es/ns/> .
<http://identi.ca/notice/97535534>

dc:creator <http://identi.ca/user/94360>;
dc:date "2012-10-25T11:28:51+00:00";
webtlab:content

"Completed registrations for #wmbangalore !Wikimedia
DevCamp Banglalore: 2430 applications,
130 invitations sent http://is.gd/FtXMhT";

webtlab:conversation
<http://identi.ca/conversation/96703048>;

webtlab:hashtag "wmbangalore";
webtlab:location [a geo:Place;

geo:lat "13.018",
geo:long "77.568"] .

<http://identi.ca/user/94360> foaf:based_near [a geo:Place;
geo:lat "52.392";
geo:long "4.899"];

foaf:name "S....... M......" .

Figure 1: Example of a post retrieved from the Identica micro-blogging service
and wrapped with semantic metadata. It includes the headers that Ztreamy
introduces.

3 Client-server interaction

This section explains how consumers and data sources are expected interact
with a Ztreamy server. The client APIs (Application Programming Interfaces)
provided with Ztreamy already implement these interaction modes. Neverthe-
less, clients can be implemented in other programming languages provided that
they follow these guidelines.

3.1 Consuming streams

Each Ztreamy stream has an identifying URI, which is chosen by the stream
administrator. Since each stream can be accessed in different modes (e.g. com-
pressed or uncompressed, with long-lived requests vs. long polling), the suffix
of the URI identifies the access mode. For example, a hypothetical stream
http://example.com/t would be accessed with one of the following URIs:

• http://example.com/t/stream: long-lived requests with uncompressed
data.

• http://example.com/t/compressed: long-lived requests with Zlib com-
pressed data.

• http://example.com/t/long-polling: long polling with uncompressed
data.

In the three cases, the client subscribes to the stream by sending an HTTP
request to the appropriate URI. The rest of the interaction with the server

4

subscribe
http://example.com/t/stream

GET /t/stream HTTP/1.1

200 OK

2 events

on_new_data

parse and process

events

event arrives

on_new_data

parse and process

events

on_new_data

parse and process

events

client finishes

client starts

1 event

3 events

event arrives

publish_event

publish_event

client

application

client

middleware

server

middleware

server

application

event arrivespublish_event

event arrivespublish_event

event arrivespublish_event

event arrivespublish_event

unsubscribe
close HTTP connection

event arrivespublish_event

flush buffer

flush buffer

flush buffer

flush buffer

Figure 2: Interaction pattern of the long-lived requests mode.

depends on the access mode. The following sections explain the interaction
pattern of each mode.

3.1.1 Long-lived subscriptions

Figure 2 shows a typical interaction with the long-lived requests mode, also
known as HTTP streaming. In this mode, the client subscribes by sending an
HTTP request to the server. Periodically, and only if new data is available, the
server sends that data to the client, but does not finish the request. I.e., the
underlying TCP connection between client and server remains open, and the
client does not need to send new requests in order to get new data: the server
sends it proactively. The client unsubscribes by closing the connection.

Client developers that use this mode must be aware that some HTTP client
libraries block the client process until the server finishes the request. If they use
a library, it must provide the ability to communicate data to the application
as soon as a new chunk arrives from the server. There are appropriate HTTP
client libraries available for every major programming language.

When a client subscribes to a stream, it receives only the new data that
appears after the instant the subscription is established. If a client loses its
connection to the server due to a network failure, an intermediate proxy that
closes it or any other cause, it can ask for the events it missed. This is done by
providing, in the reconnection request, the id of the last data item it received.
It must me communicated as a URI parameter with name last-seen. For
example:

http://example.com/t/stream?last-seen=ah34r56

A server receiving a request for that URI will send, before any new data,
the data items that were published after the item ah34r56 up to the instant the

5

receive events
http://example.com/t/stream

GET /t/stream HTTP/1.1

200 OK / 2 events

2 events

parse and process

events

event arrives

parse and process

events

client finishes

client starts

event arrives

publish_event

publish_event

client

application

client

middleware

server

middleware

server

application

event arrivespublish_event

event arrivespublish_event

event arrivespublish_event

event arrivespublish_event

event arrivespublish_event

flush buffer

flush buffer

flush buffer

flush buffer

GET /t/stream?last-seen=...
 HTTP/1.1

receive events
http://example.com/t/stream

200 OK / 4 events

2 events

Figure 3: Interaction pattern of the long polling requests mode.

client reconnected. Since the size of the buffer in the server is bounded, data
items may be lost in long disruptions. In that case, the server will not be able
to recognize the event id and will send all the data it has in its buffer.

3.1.2 Long polling requests

The long-lived mode is more efficient, since just one HTTP request is sent to
the server and just one TCP connection is needed. Clients that, however, do
not want or cannot use the long-lived mechanism, can implement the alternative
long polling mode. A typical interaction with this mode is shown in figure 3. In
this mode, there is no actual subscription, in the sense that the server finishes
the request each time it sends new data to the client. If the client wishes to
receive more data, it needs to issue a new request each time the server finishes
the previous one.

For every new request it sends, the client must specify the id of the last data
item it received, so that it does not miss the data published between the end
of the previous request and the processing of the new request by the server.
This is done with the last-seen parameter, in the same way as explained for
long-lived subscriptions.

The client usually sends a new request immediately after the previous request
is finished. Nevertheless, the client may choose to delay it. Since the server
buffers the most recent data items, data is not lost provided the period between
requests is not unreasonably long. This pattern increases the delay between the
publication of a data item and its reception by the client.

If a client sends a request but there is no new data available (i.e. the id of
the last item it specifies corresponds to the most recent item of the stream), the
server keeps the request open until new data arrives. At that moment, it sends
the data and finishes the request.

6

Since no state is kept between consecutive long polling requests from the
same client, compression is not used in this mode.

3.1.3 Compressed streams

In the long-lived requests mode, compression may be used in order to reduce
network traffic. Our experiments show dramatic performance gains when com-
pression is used. See section 4.3 for further information about how Ztreamy
implements this feature.

When the client subscribes to a stream that is configured to use compres-
sion, it must process data assuming it is not compressed until the server sends
a Set-Compression message (see section 3.3). At that moment, the client must
initialize a ZLib decompressor and use it to decompress any future data it re-
ceives from that stream. Since ZLib must keep a state, the same decompressor
object must be used for that stream until the client unsubscribes.

The client might receive a data chunk that includes together a Set-Compression
message and further data. Any data that follows the Set-Compression mes-
sage must be processed through the ZLib decompressor, even when it is received
together with that command.

3.2 Sending events from producers to stream servers for
publication

Data producers that wish to publish data in a stream must send the data to the
stream server. Streams have a special /publish URI suffix that is used to send
data items for publication. For example:

http://example.com/t/publish

Producers must send an HTTP POST request with that URI. The body of
the request must contain one or more data items with the format specified in
section 2. The HTTP Content-Type header must be set to:

application/x-ztreamy-event

3.3 Control messages

Ztreamy uses control messages for communicating some situations related to the
stream to its consumers. Those control messages are sent as any other data item
in the stream, i.e. they follow the same format as normal items. They can be
separated from normal items because they use a special body syntax identifier
(ztreamy-command). The control items that the current version of Ztreamy uses
are intended to be consumed by the Ztreamy framework and not delivered to
the application, although new control messages could in the future be intended
for informing applications.

The control messages currently used by Ztreamy are:

• Set-Compression: used for communicating the consumers of a stream that
the rest of the stream will be compressed with ZLib, as explained in sec-
tion 3.1.3.

7

• Test-Connection: used by stream servers to check, after long periods with-
out data in the stream, that the subscribed long-lived clients are still con-
nected. This message can be ignored by consumers. They are not expected
to answer it, because the TCP protocol automatically notifies the server
about the connections that are no longer active. This message allows the
server to free the memory resources associated to lost clients.

• Stream-Finished : used by stream servers to notify that a stream will be
closed. No more items will be transmitted through the stream after this
one. Consumers may disconnect after receiving it.

4 Implementation of the server

This section describes the most important design and implementation decisions
that affect the behavior and performance of the server. As shown in the evalu-
ation of Ztreamy, there are several decisions that play a big role:

• Use of single-threaded non-blocking input/output: Ztreamy works on top
of the Tornado Web server, which uses the non-blocking input/output
APIs available in modern operating systems. The servers of this kind
tend to work better when handling large amounts of simultaneous clients
than multithreaded servers that use the traditional blocking APIs.

• Buffering data at the server: Instead of sending data as soon as it is
available for publication, the server can buffer the data and, periodically,
send all the data in the buffer to the clients. This mechanism is optional,
and its period can be configured for the needs of the application.

• Use of compression: Data can be compressed with the stream compressor
ZLib. Since typical RDF data has a high degree of redundancy, it can
dramatically reduce network traffic (about 85% less traffic in our experi-
ments), which allows more clients to be handled from a single server when
the available bandwidth is a limited. In addition, it may also save CPU
when there is a big number of subscribed clients.

The next sections explain how Ztreamy servers implement these three mech-
anisms, as well as other features.

4.1 Single-threaded non-blocking input/output

The Tornado Web server implements its networking capabilities on top of non-
blocking APIs of the operating system. For example, it uses in Linux the epoll

kernel event notification mechanism instead of blocking with the system calls
select or poll. The epoll system is more efficient when watching a large number
of file descriptors2, because it works in constant time with respect to the number
of descriptors, whereas select and poll work in linear time.

Because of that, the interfaces that Tornado exposes to applications are
mainly non-blocking (often called asynchronous): when an application calls a
function in Tornado that involves networking, such as sending data through a

2Network sockets in Unix follow the same abstractions as files.

8

socket, the function returns immediately, without waiting for the operation to
complete. Once the it is completed, an event is fired and Tornado notifies it
by calling the callback function the application provided. Tornado exposes an
event loop, called the ioloop, that dispatches the events. Once an application
has been initialized, it yields control to the ioloop.

The fact that Tornado works in a non-blocking mode is the reason that we
decided to follows an event-driven paradigm in the design of the Ztreamy server.
The server is normally idle, waiting for events (e.g. a new subscription is waiting,
a source sends a new item for publication, the data it sent to a client arrived
correctly, a timer is triggered, etc.) When an event happens, Tornado notifies
the server by calling the associated callback function. The callback contains the
appropriate code for reacting to that event, which sometimes includes calling
other non-blocking operations and registering new callbacks. Once the callback
finishes, the ioloop regains control and dispatches the next event if it is already
available, or waits for it to occur if not.

Tornado gives full control to Ztreamy over the HTTP request. That means
that Ztreamy can keep a request on hold instead of having to respond immedi-
ately as other Web frameworks usually impose. Moreover, Ztreamy can write
data progressively and keep the response open for an indefinite period of time.
This feature is specially relevant for the implementation of long-lived requests.

4.2 Buffering data at the server

The server can be configured to send data to subscribers as soon as a data item
is ready for publication, or buffer it in order to send it later. We have seen
that the latter reduces CPU use by the server and improves the effectiveness of
compression. The buffer works in the following way:

• When a new data item is available for publication, it is just stored in a
buffer.

• Periodically, e.g. every 0.5s (the period is a configurable parameter), the
server sends all the data from the buffer to every registered client and
empties the buffer for the next cycle.

Its implementation is based on scheduling a periodic callback in Tornado’s
ioloop. The callback sends all the items in the buffer to the currently subscribed
clients. For long-lived clients, data is sent immediately but the response is kept
open. For long-polling clients, the response is closed immediately after sending
the data.

Our experiments show that the bigger the period, the lower the CPU use.
When the load of the server is very high, it may happen that the server is
still busy when the next period is fired. In that case, the ioloop automatically
delays it until it regains control. This increases the effective period. Although
it provokes bigger data delivery delays, it has the positive side-effect that the
server automatically adjusts its period according to its current load: when the
load is low, it works exactly at the configured period; when the load is high,
the effective period increases, which allows the server to keep working with a
controlled CPU use.

Buffering has the obvious cost that it increases data delivery delays. In nor-
mal situations, the average increase of delay is half the period. With high loads,

9

since the actual period increases as explained above, delivery delays increase.
In order to avoid the accumulation of delays when several servers are chained
to serve a stream, Ztreamy servers provide a special URI with suffix /priority

that bypasses the buffer. Chained repeaters should use this URI instead of the
regular one. Ztreamy keeps a list of clients connected to this special URI, and
sends the items to them immediately when they are available, instead of waiting
to the next period of the buffer.

4.3 Compression

Experiments with a preliminary prototype of the platform showed that the avail-
able bandwidth in the server is one of the main limiting factors to the number
of simultaneous clients it can handle. Ztreamy has been especially designed
for transporting sensor data represented as RDF, whose usual serializations use
human-readable textual data. Furthermore, it is usual for data sources to pro-
duce data items that follow homogeneous structures, and therefore are very
similar (for example, several sensors of the same type will probably use the
same ontologies to describe their measurements). There is, therefore, room for
reducing bandwidth consumption by compressing data. However, due to the
probably small size of the data items transmitted through the platform (e.g. a
single measurement from a sensor), compressing each item in isolation would
not achieve significant gains. Therefore, streams need to be compressed as a
whole instead of independently compressing their individual data items.

We have chosen the ZLib compressor3 for it being the most used imple-
mentation of the widely spread Deflate stream compression protocol [2]. It is
available for many programming languages and platforms, and therefore does
not limit the options for developing client applications.

Compressing the stream as a whole instead of single data items poses a
challenge: in order to reduce the consumption of resources in the server, data
should ideally be compressed only once, independently of the number of sub-
scribed clients. However, stream compression algorithms require clients to keep
state information in order to decompress new data4. That state is not known to
new clients that subscribe to an already running stream, which would therefore
not be able to decompress the data.

Ztreamy solves the problem in the following way. Each stream has an associ-
ated compression context. Data is compressed only once for all the clients of the
stream, using its compression context. When a new client connects, it cannot
be served data from that context, because the client does not know it. Ztreamy
solves the problem by creating a specific compression context for sending data
to that client. Periodically, and only if there are new clients using ad-hoc com-
pression contexts, the state of the context of the stream is reset. Resetting its
state prevents the compressor from using past data, and therefore any client can
begin to decompress the data without needing to know the previous context.
The compression context is reset periodically instead of whenever a new client
arrives because every time it is reset has a cost in the compression ratio, due to
the compressor losing its memory about previously seen data.

3http://www.zlib.net/
4Deflate decompressors are required to keep the last 32 KB of decompressed data, because

the compressor may ask the decompressor to repeat a sequence of previous data within that
range.

10

4.4 Serving past data

As explained in section 3.1, client requests may include a last-seen parameter
that specifies the identifier of the last event the client received. This is required
for implementing long-polling interactions, in order to avoid losing the data that
is published between the instants at which a connection is closed and the next
request from that client arrives. In addition, the mechanism helps in long-lived
requests to avoid losing data when network failures cause connections to be lost.

Clients that send the last-seen parameter receive all the data that has
already been published in the stream and is more recent than the data item
whose identifier is provided. If the item with that identifier is not in memory,
it is assumed to be older than the oldest item in memory. In that case, all the
data in memory is sent to the client.

The server implements this feature by storing in memory the most recent
data items that were transmitted through the stream. The number of items
that are stored is a configurable parameter. It should be set to a sensible value,
taking into account the minimum duration for which data is expected to be
recoverable and the average data rate of the stream.

4.5 Handling of client requests and subscriptions

The Ztreamy server has to process long-lived requests and long-polling requests
differently.

When the server receives a long-lived request, it stores it in the list of sub-
scribed clients. If the request includes the last-seen, the appropriate data is
sent to the client when the request is processed. Then, every time new data is
available (or when a period finishes if the server uses buffers), it is sent to all
the clients in the list.

When the server receives a long-polling request that contains a last-seen

parameter, the server sends the corresponding data and finishes the request.
However, if there is no last-seen parameter in the request, or there is but
it contains the identifier of the most recent data item, the request is stored
in the list of long-polling clients. When the next data item is available for
publication, the server responds to all the pending long-polling requests with
that data finishes their responses. Then, the server clears that list, because the
clients are expected to send a new request if they wish to continue listening
to the stream. If the server is configured to use buffering, the process above
happens when a period finishes instead of as soon as new data is available.

5 Conclusions

This technical report complemented the information available at [1] with some
technical details regarding how clients and servers interact, the data presentation
format and some notes about its implementation. Further detail can be found
at the source code of Ztreamy5.

5https://github.com/jfisteus/ztreamy

11

https://github.com/jfisteus/ztreamy

References

[1] Jesus A. Fisteus, Norberto Fernandez Garcia, Luis Sanchez Fernandez,
and Damaris Fuentes-Lorenzo. Ztreamy: A middleware for publishing
semantic streams on the web. Journal of Web Semantics, 2013. doi:
10.1016/j.websem.2013.11.002.

[2] P. Deutsch. DEFLATE Compressed Data Format Specification version 1.3.
RFC 1951 (Informational), May 1996.

12

	Introduction
	Data presentation format
	Client-server interaction
	Consuming streams
	Sending events from producers to stream servers for publication
	Control messages

	Implementation of the server
	Single-threaded non-blocking input/output
	Buffering data at the server
	Compression
	Serving past data
	Handling of client requests and subscriptions

	Conclusions

