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ABSTRACT
Multi-level networks have been a good solution in large
scale network scenarios. The implementation of a network
in different levels or sub-layers, improves the performance
and reduces the investment compared to flat topologies.
This paper introduces a method to characterize important
parameters on multi-level networks such as diameter, aver-
age distance and gateway location to be able to optimize the
global network topology. The study focuses on the lower
level of the network formed by subnetworks with regular
structures, and the method is illustrated with two of the
simplest regular topologies such as Single Ring and Dou-
ble Ring. The conclusions achieved will ease and improve
the network planning of large scale networks.
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1 Introduction

The network interconnection planning has to deal with the
main properties: node degree (links at the nodes) and diam-
eter (maximum path distance for any pair of nodes). The
ideal network would have a low node degree that optimizes
the economical investment on the network and low diam-
eter that optimizes the performance of the network. The
problem is that these two properties are contradictory [1].
Low degree networks usually involve a high diameter and
vice versa. The problem becomes critical with large scale
networks where the performance or the investment will not
fulfil the requirements due to the size of the network. In
scenarios with large number of nodes implemented as a flat
topology the two options are to build a high degree struc-
ture which involves a high investment but short distances
or the opposite [1].

Multi-level networks have become an option for large
scale interconnection network schemes obtaining better
properties, such as network diameter and average distance,
than mono-level networks. These performance properties
improve the Structural Quality of Service (SQoS), a num-
ber of metrics and properties related with the logical struc-
ture of the network [2].

The possibility of using a mechanized and simple
method to decide the structure for a multilevel network
would ease the planning tasks. A new network planning

method is proposed based on mathematical properties of
regular topologies for multilevel networks. This method
will allow to define and characterize the performance of a
network based on known regular topological information
about their subnetworks. The key aspect of this depiction
is to perform the characterization of using regular topolo-
gies without the need of additional path calculations, which
is unavoidable in the case of irregular topologies.

The study of regular topologies in mono-layer net-
works identifies relational patterns on the topology parame-
ters, such as diameters and average distances, as a function
of the number of nodes and independent paths. Extrapolat-
ing these ideas, it is possible to define similar patterns for
multilevel environments.

This paper will only focus on the lowest level subnet-
works and in future the higher lever will be studied. The
idea is to treat each subnetwork as independent and all the
subnetworks are connected to a Black box, representing the
higher levels of the network. This idea of dividing the net-
work into independent groups is not new. It has been suc-
cessfully used to plan a two level network using heuristic
algorithms. [3].

Two of the simplest regular topologies are chosen to
present the bases for this network planning proposal (Sin-
gle and Double Ring). These two structures have been ex-
tensively analyzed on mono-level environments, but sur-
prisingly, they have not been characterized for a multilevel
purpose. The study of these two topologies is not enough
for efficiently planning a multilevel network, many other
regular topologies should be characterize in the same way.
Therefore, this work tries to illustrate the process, method-
ology and feasibility of this new method, but to be applied
on real scenarios there is much work that has to be done.

The structure of the rest of the document is as follows
Section 2 introduces the previous and related work to this
topic. Section 3 explains the parameters used to charac-
terize the network topologies. Section 4 explains the pro-
cedure of obtaining the mathematical properties and equa-
tions. Section 5 introduces formulas obtained for the two
analyzed topologies. Finally, in Section 7 the conclusions
are extracted from this paper.

2 Related work

Multilevel networks are already being used, especially for
distribution networks [4] and [5]. The multilevel connec-



tions have been treated from different points of view:
In [6]-[7] the goal was to obtain a solution using al-

gorithms, such as paths calculations, to interconnect a set
of nodes optimizing the diameter and arcs connecting the
nodes. This optimization can be done only for small net-
works due to the exponential growth of the number of paths
calculated. In [8] the performance of routing at different
link configurations are tested and in other cases a regular
topology is studied to find the way of dividing it in multi-
levels such as in [9] and [10]. However, these studies do
not treat the combination of different types of topologies.

3 Parameters

This section introduces the important concepts of the ana-
lyzed parameters to characterize the network topologies:

Diameter (DT,N,L,P ): This value corresponds to the
maximum number of hops needed to leave the subnetwork
to the higher or lower level. This value is calculated in
function of:

- T: Topology (SR or DR).
- N: Number of nodes at the subnetwork.
- L: Number nodes or gateways linked to the higher

level (two or three).
- P: Path number (1 corresponds to the shortest path,

2 to the second independent shortest path).
Gateways are the nodes linking levels named as Gj

being 0 < j ≤ L, each subnetwork will have L gateways.
In this work, the number of gateways is limited to three to
be able to contract a more vertical structure, the more gate-
ways a subnetwork has, more nodes will form the higher
level. For logical representation each gateway is linked
to another node belonging to the higher level, but in real-
ity, these gateways nodes would probably be located in the
same building and physically belonging to both levels. The
reason for considering two separate nodes is that logically
the process of level changing even at the same node can be
considered as one hop just by itself.

Let di(P ) be the shortest distance (P = 1) or the
second shortest distance considering no links nor nodes in
common with the first path (P = 2) from any node i to the
closest gateway Gj . Then the diameter value is given by
Equation (1).

DT,N,L,P = max(di(P )) (1)

Average distance (AT,N,L,P ): This value corre-
sponds to the average number of hops needed to leave the
subnetwork to the higher level or vice versa in function of
the same parameters as the diameter.

The value of the average distance, considering the
same rules as the diameter, for P = 1 and P = 2 is given
by Formula (2).

AT,N,L,P =
1

N

N∑
i=1

di(p) (2)

4 Methodology

This section treats the process of obtaining the equations of
the different cases. The idea is to calculate the distances
from all the nodes to the gateways (nodes linked to the
higher level). Due to the topological properties of regu-
lar structures it is possible to calculate the distances with
no path calculation at all. The number of independent or
disjoint paths treated in this paper are just two, but in the
future a third or fourth path analysis can be included (for
the topologies that allow them, the number of independent
paths is given by the node degree of the topology).

To find the best position of the gateways at the net-
work, an implemented algorithm performs a sweep of the
possible combination of the nodes selected. The mecha-
nism of the algorithm is to select one of the nodes (it can
be any node due to the regularity of the topologies studied)
that can be named as G1. Then starting to sweep for all
the possible values of the rest of the gateways the param-
eters are calculated (diameters and average distances) and
the best options are selected as G2 and G3 (in case of three
links to the higher level). The result obtained gives the rel-
ative positions of G2 and G3 from G1, and these relative
positions can be expressed as a function of the number of
nodes N, explained in depth in Section 5. G1 can be any of
the nodes of the network, therefore there will be N optimal
configurations for the position of the gateways.

The best configurations change depending on the con-
sidered parameters, in this case, and in order, they are the
minimum values of the following criteria:

1) Diameter of the first path (DT,N,L,P=1)
2) Diameter of the second path (DT,N,L,P=2)
3) Average distance of the first path (AT,N,L,P=1)
4) Average distance of the second path (AT,N,L,P=2)
The reason for giving priority to the diameter values

is due to their role when guaranteeing a certain level of per-
formance for the network. These values can be considered
as the worst case possible. Therefore, there is a defined
limit for communications between any pair of nodes (in this
case from a node to a corresponding gateway).

The rest of the simulation consists of the increment of
the number of nodes N which will give deterministic series
in function of N for the four parameters studied. Based on
these series, mathematical formulas are defined to charac-
terize each of the topologies in Section 5.

5 Mathematical Approach

This section treats the equations and parameters found that
characterize the subnetworks and linking the higher/lower
level(s) of the network. As an introduction, the following
paragraphs introduce the properties and formats of the for-
mulas obtained for a better understanding.
Diameter:

Usually, the diameter follows a stair distribution with
N. The difference between DT,N,L,P and DT,N−1,L,P is
always 0 or 1 hop, which defines the increment of the stair



step on 1 hop respect to the previous one. The same value
of DT,N,L,P is related to a set of consecutive values of N
(#SET). The value of #SET is constant in each of the cases
(the same for the same values of T, L and P). Another value
called offset, Of , is related to the starting value of N of
each of the sets with the same diameter. The diameter for-
mulation is expressed in a general formula as Equation (3).

DT,N,L,P =

[
N + Of

#SET

]
(3)

Average Distance:
The equations obtained for the average distances usu-

ally follow a pattern which can be defined as a sum that
corresponds to Equation (4) where IC is the initial condi-
tion of the series and S is the increment or step in the series.

AT,N,L,P = IC +
∑

S(STEP ) + ET,N,L,P (4)

Due to the asymmetric relation between N (number of
nodes) and L (links to the higher level) the series has
anomalies for some of those N values. The variable
ET,N,L,P is introduced to correct this problem and will
have the format illustrated by Equation (5) where REP is
the cycle of the anomaly which is constant for the same
values of T, L and P; Nerr is any value of N where the
anomaly occurs and E is the value of the anomaly.

ET,N,L,P = E ∗ (
[

N+REP−Nerr
REP

]
−
[

N+REP−Nerr−1
REP

]
)
(5)

Analyzing Equation (5), ET,N,L,P = 0 for all N val-
ues different than Nerr and at the exact values of Nerr

ET,N,L,P = E, which is required to have a modification
on the series.
Gateway position:

This value represents the relative position of the nodes
linked to the higher level to obtain the best results possible
concerning the two previous values. The relative position is
only needed to be calculated from a fixed value of G1 due
to the regularity of the structure and then the result can be
applied to any possible value of G1. The notation is defined
by Equation (6):

G1

G2 = (G1 + X)mod(N)
G3 = (G1 + Y )mod(N)

(6)

Being 1 ≤ G1 ≤ N and X and Y positive integers, X < Y ,
considering mod(N) for any resulting position of G2 or G3.
In most of the cases, there is more that one solution for the
relative position of the gateways.

5.1 Single Ring (SR)

The Single Ring analysis gives simple equations very use-
ful to identify each term explained at the introduction of
this Section. The diameter value (DSR(N, L, P ))is shown
by Equation (7):

DSR(N, L, P ) =

[
(N + L− P ) ∗ P

2L

]
(7)

There are some interesting conclusions extracted
from Equation (7). The value #SET is given by 2L/P
and Of corresponds to the term L− P .

The value from Table 1 for the SR helps to define a
general equation for the average distances. The average
distance (DSR(N, L, P ))is related with DSR(N, L, P =
1) and it corresponds to Equation (8):

ASR(N, L, P ) =
(2 ∗ P − 1)

N
∗

N∑
i=3

[
i + L− 1

2L

]
︸ ︷︷ ︸
DSR(i,L,P=1)

+ESR(N, L, P )

(8)
The term ESR(N, L, P ) corrects the variation of the se-
ries due to some asymmetries between the number of nodes
and L and its value can be found at Table 2. The conclu-
sion of Equation (8) is that the value of S (the step of the
series) corresponds to (2 ∗ P − 1) ∗

[
i+L−1

2L

]
. As N in-

creases, the step increases as well. The term 2 ∗ P − 1
indicates that the average distance of the second path
(ASR(N, L, P = 2)) is three times the average distance
of the first path (ASR(N, L, P = 1)) in most of the cases
(when ESR(N, L, P ) = 0), see Equation (9)). There is no
term IC for any of the situations.

ASR(N, L, 2) = 3 ∗ASR(N, L, 1) + ESR(N, L, 2) (9)

The term ESR(N, L, P ) of Equations (8) and (9) can
be summarized by Equation (10).

ESR(N, L, P ) =

{
4−L+2∗(N(mod 2))

N
if condition (11)

0 rest
(10){

N+X
L

}
= 0, N+X

L
(mod 2) = 1 & P = 2

−(L− 2) ≤ X ≤ (L− 2)
(11)

The gateways positions at Tables 4 and 5 represent the
relative position of the nodes linked to the higher level in
the subnetwork. For most values of N, there is more than
one solution for these relative positions. To identify these
solutions and the corresponding N for each one, N can be
defined as a function of a variable k ∈ N

The values of VSR,1 , VSR,2 and VSR,3 presented at
Tables 4 and 5 are shown at Table 6. The values of VSR,1

and VSR,3 are independent but VSR,2 depends on VSR,1.
There is a direct relation between the relative position

of the gateways and the number of optimal configurations
with the value of L. Making the proper substitutions in the
equations the number of different optimal solutions for the
relative position of the gateways can be identified, the total
number of optimal configuration is N times these values
since G1 can be any node of the SR. See Table 8.

5.2 Double Ring (DR)

The study of the Double Ring gives some simple equations
to be able to define a general equation for the diameter val-
ues. See Equation (12).

DDR(N, L, P ) =

[
(N −OfDR) ∗ P

4L

]
+1+EDRDiam (12)

The term EDR(Diam) is an anomaly on the series for the
value of the diameter DDR(N, L = 3, P = 2). The



anomaly in this case comes from the chosen positions of
the gateways. As explained at Section 4 the first criterion
to decide the optimal position of the gateways is to opti-
mize the first path diameter (DDR(N, L = 3, P = 1)). In
this case the optimization costs an increment of the value of
the second path diameter (DDR(N, L = 3, P = 2)). If the
criterion would be to optimize (DDR(N, L = 3, P = 2))
then the anomaly would be at the DDR(N, L = 3, P = 1)
equation. In this case EDR(Diam) corresponds to formula
(13).

EDR(Diam) =

{
1 if

{
N+2

6

}
= 0, P = 2 and L = 3

0 rest
(13)

The same conclusions can be extracted from Formula (12)
as from Formula (7) in the case of the SR. In this case the
term P/4L gives the value of #SET . The value of Of

is presented at Condition (14). Of is 2 when L = 2 and
P = 1.

OfDR =

{
2 if P = 1 and L = 2
0 rest

(14)

Unfortunately for the average distances
(ADR(N, L, P )) it was not possible to find a general
equation based on the results presented at Table 1. In any
case, looking at each equation individually, the terms S
and IC are easily identified.

Tables 3 and 4 show the optimal relative position of
the gateways at the DR topology. The value of N is defined
as a function of a variable k ∈ N, as at the SR case, to
identify the different solutions. Table 6 exposes the values
of the variable used at Table 4, VDR,1, VDR,2 and VDR,3,
in this case as a function of VDR,2 since VDR,3 depends on
it.

In the case of L = 3 the location of the gate-
ways equations becomes complex. Therefore, the gate-
ways possibilities are split in m options where 1 ≤ m ≤
Number of possibilities and they are treated separately
from the positions when L = 2.

The division basically is following the scheme repre-
sented at Table 3, in function of m and the values VDR,4,
VDR,5, VDR,6, and VDR,7 (Table 7) to represent the differ-
ent solutions for the same configurations.

Making the proper substitutions on the equations on
Table 3 with the values of Tables 6 and 7 the number of pos-
sible optimal solution for the relative position of the nodes
is presented at Table 8.

SR G2

N = 4 ∗ k G1 + N
2

+ VSR,1

N = 2 ∗ k + 1 G1 +
[

N+VSR,2
2

]
N = 2 ∗ (2 ∗ k + 1) G1 + N

2

DR G2

N = 8 ∗ k G1 + 3∗N
4

N = 2 ∗ (2 ∗ k + 1) G1 +
[

N
4

]
+ VDR,1

N = 4 ∗ (2 ∗ k + 1) G1 +
VDR,2∗N

4
+ VDR,3

Table 4. Gateways Relative Position When L=2

N G2 G3

6 ∗ k G1 + N
3

+ VSR,1 G1 + 2N
3

+ VSR,2

3 ∗ k + 1 & 3 ∗ k + 2 G1 +
[

N+VSR,3
3

]
G1 +

[
2N+VSR,3

3

]
3 ∗ (2 ∗ k + 1) G1 + N

3
G1 + 2N

3

Table 5. Single Ring, Gateways Position When L=3

SR VSR,1 = −1 VSR,1 = 0 VSR,1 = 1
VSR,2 -1,0 -1,0,1 0,1
VSR,3 (0, L− 1) (0, L− 1) (0, L− 1)

DR VDR,2 = 1 VDR,2 = 3
VDR,3 0 -1,0,1
VDR,1 0, 1 0, 1

Table 6. V values

6 Application

It is important to understand that the parameters equations
must be defined only once. Then, the can be used for plan-
ning a real network. In this paper it has been already de-
scribed how to define the formulas for multilevel purposes
for two topologies. The important issue is the methodol-
ogy and concept of obtaining the formulas for any regular
topology, more important than the resulting formulas pre-
sented for the Ring or Double Ring which are just examples
of the procedure.

6.1 Topology decision

The best way to explain the application of the proposed
method is to set an scenario to test it. It should be always
kept in mind that this example is a basic illustration of the
application of the method, for the real feasibility of it, more
topologies must be included on the analysis.

The test scenario consists on three municipalities,
each of them is required to have a network by their own
and at the same time they should be interconnected to each
other. Therefore, each municipality is a subnetwork and
they are interconnected by a higher level. The number of
nodes required at each subnetwork are 12, 20 and 30. For
reliability reasons two independent or disjoint paths must
be provided between any pair of nodes of the complete net-
work. It is assumed that the higher level (which is out of the
scope of this study) can handle the requirements of two in-
dependent paths for any pair of nodes. The goal is to design
the best topology for each subnetwork but always consider-
ing the fact that they should have similar logical properties
to obtain the best possible performance.

Applying the formulas presented in Section 5, Table
9 shows the results for each of the subnetwork and each of
the possible networks (SR and DR and L = 2 and L = 3)
for two independent paths.

The decision of the topologies at this point is very
simple. The subnetwork with 30 nodes is the most restric-
tive. Hence, the best topology possible is selected for this
municipality since the goal is to achieve the best possible
performance. Following the criteria described in Section 4



SR L=2 L=3
P=1 1

N
∗
∑N

i=3

[
i+1
4

]
1
N
∗
∑N

i=3

[
i+2
6

]
P=2 1

N
∗
∑N

i=3 3 ∗
[

i+1
4

]
+ ESR(N, L, P ) 1

N
∗
∑N

i=3 3 ∗
[

i+2
6

]
+ ESR(N, L, P )

DR L=2 L=3
P=1 1

N
∗
∑N/2

i=2 2 ∗ (
[

i−1
4

]
+ 1) 1

N
∗ (1 +

∑N/2
i=3 (

[
i−2
6

]
+
[

i
6

]
+ 2))

P=2 1
N
∗ (2 +

∑N/2
i=2 (6 ∗

[
i+3
4

]
− 2) + EDR(N, L, P )) 1

N
∗
∑N/2

i=1 (2 ∗
[

i
2

]
+ 1) + EDR(N, L, P ))

Table 1. AT,N,L,P

SR L=2 L=3
P=1 0 0

P=2 2 ∗ (
[

N−2
4

]
−
[

N−3
4

]
)/N (3 ∗ (

[
N−3

6

]
−
[

N−4
6

]
) + (

[
N−2

6

]
−
[

N−3
6

]
) + (

[
N+2

6

]
−
[

N+1
6

]
))/N

DR L=2 L=3
P=1 0 0

P=2 4 ∗ (
[

N
8

]
−
[

N−1
8

]
)/N 2

N
∗ (
[

N+2
12

]
−
[

N+1
12

]
) + 2

N
∗ (
[

N−2
12

]
−
[

N−3
12

]
)

Table 2. ET,N,L,P

m = 1 m = 2 m = 3

G2 G1 +
[

N
6

]
+ VDR,4 G1 +

[
N
3

]
+ VDR,5 G1 +

[
2N
3

]
+ VDR,6

G3 G1 + G2(m = 1) + G2(m = 3) G1 + 2 ∗G2(m = 2) + VDR,7 G1 + G2(m = 1) + G2(m = 3)

Table 3. Double Ring, Gateways Position When L=3

N VDR,4 VDR,5 VDR,6 VDR,7

6k 0 0 0 0
12k + 2 1 0 0 1
12k + 4 1 0 0,1 0,1
12k + 8 0 1 0,1 -1,0
12k + 10 0 1 1 1

Table 7. VDR,4, VDR,5, VDR,6 and VDR,7 values

SR
N Number of possibilities

2 ∗ L ∗ k L*(L+1)+1
L ∗ (2 ∗ k + 1) 1

Rest L

DR (1 ≤ l1 ≤ L− 1)
N Number of possibilities

4 ∗ L ∗ k 2*(L-2)+1
4 ∗ (L ∗ k + l1) 2*L

Rest L

Table 8. SR and DR Number of Optimal Configurations

of optimizing D1, D2, A1 and A2 in this order, Table 10
presents the solution.

Applying this method the three subnetworks will have
almost the same performance parameters. Characterizing
more regular topologies and implementing the formulas ob-
tained, an algorithm can give, instantaneously, a solution
for this kind of problems defining different goal functions .
In this example the goal is to optimize the parameters, but
other options could be to give a limitation on the diame-
ters, the number of total gateways to form the higher level
or many others.

6.2 Gateway Location

The optimal performance of a subnetwork is always related
to the location of the gateways. The problem could seem
trivial, the next example illustrates the opposite. The sce-
nario consists on the previous result of the subnetwork with
12 nodes and this Single Ring is implemented optimizing
the budget. Two gateways are required on this SR structure.
This is the simplest problem of gateways location, chosen
to demonstrate the application of this work even on sim-
ple designs. A priori, the best location for the gateways is
as far as possible from each other. Hence, the number of
nodes is divided by 2 and the result of the relative position
of the gateways is G1 and G2 = G1 + 6. The two nodes
that are convenient to select as gateways (C1 and C2), for
some different reasons such as largest cities, are relatively
located from each other C1 and C2 = C1 + 5.

Apparently, the two solutions are to discard one of
the largest cities as gateway or redesign the ring so the two
cities are relatively located in the proper way to be selected
as gateways. The truth, based on the results at Table 4 and
6, is that there is no modification required since there are
three different optimal relative gateway locations. G1 and
G2 = G1 + 5, G2 = G1 + 6 or G2 = G1 + 7. All
this options obtain exactly the same values (optimal) for the
diameters and average distances for the two independent
paths, therefore they are considered optimal options.

The simplest example has shown that the gateway
location is not trivial, hence, for more complex regular
topologies this gateway analysis can be critical for the
global network optimization, not only on the performance
parameters but also in managing issues or economical in-
vestment.



N 12 20 30
DSR,2,1 3 5 7
DSR,3,1 2 3 5
DDR,2,1 2 3 4
DDR,3,1 2 2 3

DSR,2,2 6 10 15
DSR,3,2 4 7 10
DDR,2,2 4 6 8
DDR,3,2 3 4 6

ASR,2,1 1.5 2.5 3.73
ASR,3,1 1 1.65 2.5
ADR,2,1 1.16 1.7 2.3
ADR,3,1 0.83 1.25 1.7

ASR,2,2 4.5 7.5 11.26
ASR,3,2 3 5 7.5
ADR,2,2 2.83 4.3 6.1
ADR,3,2 2 3 4.2

Table 9. Scenario Parameters

N Topology D1 D2 A1 A2

30 DR L=3 3 6 1.7 4.2
20 DR L=2 3 6 1.7 4.3
12 SR L=2 3 6 1.5 4.5

Table 10. Solution

7 Conclusion

The multilevel study has returned some interesting conclu-
sions. Before the parameters characterization, the proce-
dure to plan the lowest level of a multilevel network was
to test some potential options, calculate all the paths for all
the possible transmissions and then decide the best option.

The studies of regular topologies as monolayer net-
works give some symmetries that can be useful for a multi-
level scenario but always considering that the relations be-
tween the number of nodes and gateways will add com-
plexity. Hence, the global network can be divided in sub-
networks which are much easier to characterize.

The subnetwork of a multilevel structure can be char-
acterized using regular topologies. The use of regular
topologies allow to define parameters such as average dis-
tance and diameter as equations in function of the number
of nodes N of the subnetwork, the gateways L, the path
P and the topology considered. These parameters values
follow well defined patterns and, therefore, they are deter-
ministic in the way that the exact value of the diameter and
the average distance can be estimated with no path calcula-
tion at all. The relative position of the gateways for obtain-
ing the optimal performance of the subnetwork can be also
characterized.

The properties of the potential network structures are
obtained just using the newly given equations, or obtain-
ing other equations for other topologies following the same
methodology. These equations are useful to optimize the
lowest level of the network in such way that each subnet-
work has the same performance as the rest of the subnet-
works. This balance on the performance allows for the op-
timization of the resources of the complete network and,
hence, to take advantage of the network properties such as

short diameters and short average distances and therefore
short delays. The comparison of these options does not re-
quest a long or complex procedure, therefore, the planning
can be focused on other important aspects such as the fiber
civilian construction and implementation. The method is
initially proved as possible with two topologies, Single and
Double Ring, which motivates the research of the potential
of the regular topologies for the multilevel issues.

The bases for an alternative methodology have been
established. More topologies should be characterized as
subnetworks and as the higher level, on a multilevel envi-
ronment, to achieve a real feasible planning method.
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